These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 14979418)

  • 1. pH-stat ventilation management: a simple method of achieving this regimen.
    Acsell JR
    J Extra Corpor Technol; 2003 Dec; 35(4):287-9. PubMed ID: 14979418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between oxygenator exhaust P(CO2) and arterial P(CO2) during hypothermic cardiopulmonary bypass.
    Graham JM; Gibbs NM; Weightman WM; Sheminant MR
    Anaesth Intensive Care; 2005 Aug; 33(4):457-61. PubMed ID: 16119486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood gas strategies and management during pediatric cardiopulmonary bypass.
    Griffin DA
    ASAIO J; 2005; 51(5):657-8. PubMed ID: 16322734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of pH-stat versus Alpha-stat during hypothermic cardiopulmonary bypass in the prevention and control of acidosis in cardiac surgery.
    Piccioni MA; Leirner AA; Auler JO
    Artif Organs; 2004 Apr; 28(4):347-52. PubMed ID: 15084194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha-stat capnography for the Sorin Monolyth oxygenator.
    McCloskey DB; Strickler RF; Reusch GW
    J Extra Corpor Technol; 1994; 26(2):64-7. PubMed ID: 10147370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical evaluation of an instrument to measure carbon dioxide tension at the oxygenator gas outlet in cardiopulmonary bypass.
    Kristiansen F; Høgetveit JO; Pedersen TH
    Perfusion; 2006 Jan; 21(1):21-6. PubMed ID: 16485695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an instrument to indirectly monitor arterial pCO2 during cardiopulmonary bypass.
    Høgetveit JO; Kristiansen F; Pedersen TH
    Perfusion; 2006 Jan; 21(1):13-9. PubMed ID: 16485694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood gases and hypothermia: some theoretical and practical considerations.
    Kofstad J
    Scand J Clin Lab Invest Suppl; 1996; 224():21-6. PubMed ID: 8865418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring of CO2 exchange during cardiopulmonary bypass: the effect of oxygenator design on the applicability of capnometry.
    Aittomäki J
    Perfusion; 1993; 8(4):337-44. PubMed ID: 10171988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane oxygenator exhaust capnography for continuously estimating arterial carbon dioxide tension during cardiopulmonary bypass.
    Potger KC; McMillan D; Southwell J; Dando H; O'Shaughnessy K
    J Extra Corpor Technol; 2003 Sep; 35(3):218-23. PubMed ID: 14653424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fiber-optic chemical sensors (Gas-Stat) for blood gas monitoring during hypothermic extracorporeal circulation.
    Gøthgen IH; Siggaard-Andersen O; Rasmussen JP; Wimberley PD; Fogh-Andersen N
    Scand J Clin Lab Invest Suppl; 1987; 188():27-9. PubMed ID: 3502429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygenator exhaust capnography: an in vitro evaluation.
    Alston RP; McNicol J
    J Cardiothorac Anesth; 1988 Dec; 2(6):798-802. PubMed ID: 17171891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in serum S100beta protein and Mini-Mental State Examination after cold (28 degrees C) and warm (34 degrees C) cardiopulmonary bypass using different blood gas strategies (alpha-stat and pH-stat).
    Shaaban-Ali M; Harmer M; Vaughan RS; Dunne JA; Latto IP; Haaverstad R; Kulatilake EN; Butchart EG
    Acta Anaesthesiol Scand; 2002 Jan; 46(1):10-6. PubMed ID: 11903066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of arterial carbon dioxide tension on systemic vascular resistance in patients undergoing cardiopulmonary bypass.
    Buhre W; Weyland A; Grüne F; van der Velde J; Schorn B; Kazmaier S; Sonntag H
    Acta Anaesthesiol Scand; 1998 Feb; 42(2):167-71. PubMed ID: 9509197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of alpha-stat and pH-stat strategies with a membrane oxygenator during deep hypothermic circulatory arrest in young pigs.
    Kim WG; Lim C; Moon HJ; Kim YJ
    Artif Organs; 2000 Nov; 24(11):908-12. PubMed ID: 11119081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous arterial and venous blood gas monitoring during cardiopulmonary bypass.
    Mark JB; FitzGerald D; Fenton T; Fosberg AM; Camann W; Maffeo N; Winkelman J
    J Thorac Cardiovasc Surg; 1991 Sep; 102(3):431-9. PubMed ID: 1908928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Use of lande-edwards membrane oxygenators as artificial lungs].
    Vanderhoeft P; Derks C; de Francquen P; Sarezky M; Simpson R
    Acta Chir Belg; 1975 Jan; 74(1):82-5. PubMed ID: 1114875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha-stat and pH-stat cardiopulmonary bypass in newborn pigs.
    Priestley MA; Golden JA; O'Hara IB; McCann J; Kurth CD
    J Thorac Cardiovasc Surg; 2001 Feb; 121(2):336-43. PubMed ID: 11174740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of acid-base management for cardiac and cerebral preservation during open heart operations.
    Swan H
    Surg Gynecol Obstet; 1984 Apr; 158(4):391-414. PubMed ID: 6424251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional cerebrovascular reactivity to carbon dioxide during cardiopulmonary bypass in patients with cerebrovascular disease.
    Gravlee GP; Roy RC; Stump DA; Hudspeth AS; Rogers AT; Prough DS
    J Thorac Cardiovasc Surg; 1990 Jun; 99(6):1022-9. PubMed ID: 2113599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.