These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 14979871)
61. Polybasic trafficking signal mediates golgi export, ER retention or ER export and retrieval based on membrane-proximity. Parmar HB; Barry C; Duncan R PLoS One; 2014; 9(4):e94194. PubMed ID: 24714640 [TBL] [Abstract][Full Text] [Related]
62. Diacidic motifs influence the export of transmembrane proteins from the endoplasmic reticulum in plant cells. Hanton SL; Renna L; Bortolotti LE; Chatre L; Stefano G; Brandizzi F Plant Cell; 2005 Nov; 17(11):3081-93. PubMed ID: 16214902 [TBL] [Abstract][Full Text] [Related]
63. Caspase-mediated cleavage of syntaxin 5 and giantin accompanies inhibition of secretory traffic during apoptosis. Lowe M; Lane JD; Woodman PG; Allan VJ J Cell Sci; 2004 Mar; 117(Pt 7):1139-50. PubMed ID: 14970262 [TBL] [Abstract][Full Text] [Related]
64. A proline-rich region in the coxsackievirus 3A protein is required for the protein to inhibit endoplasmic reticulum-to-golgi transport. Wessels E; Duijsings D; Notebaart RA; Melchers WJ; van Kuppeveld FJ J Virol; 2005 Apr; 79(8):5163-73. PubMed ID: 15795300 [TBL] [Abstract][Full Text] [Related]
65. A crucial role of the RGS domain in trans-Golgi network export of AtRGS1 in the protein secretory pathway. Hu G; Suo Y; Huang J Mol Plant; 2013 Nov; 6(6):1933-44. PubMed ID: 23793400 [TBL] [Abstract][Full Text] [Related]
66. Identification of potential regulatory elements for the transport of Emp24p. Nakamura N; Yamazaki S; Sato K; Nakano A; Sakaguchi M; Mihara K Mol Biol Cell; 1998 Dec; 9(12):3493-503. PubMed ID: 9843583 [TBL] [Abstract][Full Text] [Related]
67. CD39 reveals novel insights into the role of transmembrane domains in protein processing, apical targeting and activity. Papanikolaou A; Papafotika A; Christoforidis S Traffic; 2011 Sep; 12(9):1148-65. PubMed ID: 21711430 [TBL] [Abstract][Full Text] [Related]
68. Di-arginine and FFAT-like motifs retain a subpopulation of PRA1 at ER-mitochondria membrane contact sites. Abu Irqeba A; Ogilvie JM PLoS One; 2020; 15(12):e0243075. PubMed ID: 33259547 [TBL] [Abstract][Full Text] [Related]
69. Characterization of human torsinA and its dystonia-associated mutant form. Liu Z; Zolkiewska A; Zolkiewski M Biochem J; 2003 Aug; 374(Pt 1):117-22. PubMed ID: 12780349 [TBL] [Abstract][Full Text] [Related]
70. The carboxyl-terminal valine is required for transport of glycoprotein CD8 alpha from the endoplasmic reticulum to the intermediate compartment. Iodice L; Sarnataro S; Bonatti S J Biol Chem; 2001 Aug; 276(31):28920-6. PubMed ID: 11384990 [TBL] [Abstract][Full Text] [Related]
71. Quality control in the endoplasmic reticulum. Ellgaard L; Helenius A Nat Rev Mol Cell Biol; 2003 Mar; 4(3):181-91. PubMed ID: 12612637 [TBL] [Abstract][Full Text] [Related]
72. A new class of endoplasmic reticulum export signal PhiXPhiXPhi for transmembrane proteins and its selective interaction with Sec24C. Otsu W; Kurooka T; Otsuka Y; Sato K; Inaba M J Biol Chem; 2013 Jun; 288(25):18521-32. PubMed ID: 23658022 [TBL] [Abstract][Full Text] [Related]
73. Carboxyl-terminal Tail-mediated Homodimerizations of Sphingomyelin Synthases Are Responsible for Efficient Export from the Endoplasmic Reticulum. Hayashi Y; Nemoto-Sasaki Y; Matsumoto N; Tanikawa T; Oka S; Tanaka Y; Arai S; Wada I; Sugiura T; Yamashita A J Biol Chem; 2017 Jan; 292(3):1122-1141. PubMed ID: 27927984 [TBL] [Abstract][Full Text] [Related]
74. A conserved motif for the transport of G protein-coupled receptors from the endoplasmic reticulum to the cell surface. Duvernay MT; Zhou F; Wu G J Biol Chem; 2004 Jul; 279(29):30741-50. PubMed ID: 15123661 [TBL] [Abstract][Full Text] [Related]
75. Transport of meprin subunits through the secretory pathway: role of the transmembrane and cytoplasmic domains and oligomerization. Hengst JA; Bond JS J Biol Chem; 2004 Aug; 279(33):34856-64. PubMed ID: 15187079 [TBL] [Abstract][Full Text] [Related]
76. Disruption of Golgi morphology and trafficking in cells expressing mutant prenylated rab acceptor-1. Gougeon PY; Prosser DC; Da-Silva LF; Ngsee JK J Biol Chem; 2002 Sep; 277(39):36408-14. PubMed ID: 12107180 [TBL] [Abstract][Full Text] [Related]
77. A conserved glycine residue in the C-terminal region of human ATG9A is required for its transport from the endoplasmic reticulum to the Golgi apparatus. Staudt C; Gilis F; Tevel V; Jadot M; Boonen M Biochem Biophys Res Commun; 2016 Oct; 479(2):404-409. PubMed ID: 27663665 [TBL] [Abstract][Full Text] [Related]
78. Substitution of the two carboxyl-terminal serines by alanine causes retention of MAL, a component of the apical sorting machinery, in the endoplasmic reticulum. Puertollano R; Alonso MA Biochem Biophys Res Commun; 1999 Jun; 260(1):188-92. PubMed ID: 10381364 [TBL] [Abstract][Full Text] [Related]
79. Disease-associated single amino acid mutation in the calf-1 domain of integrin α3 leads to defects in its processing and cell surface expression. Yamada M; Sekiguchi K Biochem Biophys Res Commun; 2013 Nov; 441(4):988-93. PubMed ID: 24220332 [TBL] [Abstract][Full Text] [Related]
80. Topogenesis and cell surface trafficking of GPR34 are facilitated by positive-inside rule that effects through a tri-basic motif in the first intracellular loop. Hasegawa H; Patel N; Ettehadieh E; Li P; Lim AC Biochim Biophys Acta; 2016 Jul; 1863(7 Pt A):1534-51. PubMed ID: 27086875 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]