BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 14980065)

  • 1. Oxygen-sensing pathways and the development of mammalian gas exchange.
    Land SC
    Redox Rep; 2003; 8(6):325-40. PubMed ID: 14980065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hochachka's "Hypoxia Defense Strategies" and the development of the pathway for oxygen.
    Land SC
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Nov; 139(3):415-33. PubMed ID: 15544965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox regulation of lung development and perinatal lung epithelial function.
    Land SC; Wilson SM
    Antioxid Redox Signal; 2005; 7(1-2):92-107. PubMed ID: 15650399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia.
    Taylor CT; Moncada S
    Arterioscler Thromb Vasc Biol; 2010 Apr; 30(4):643-7. PubMed ID: 19713530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide and mitochondrial biogenesis: a key to long-term regulation of cellular metabolism.
    Clementi E; Nisoli E
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):102-10. PubMed ID: 16091305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation.
    Brunelle JK; Bell EL; Quesada NM; Vercauteren K; Tiranti V; Zeviani M; Scarpulla RC; Chandel NS
    Cell Metab; 2005 Jun; 1(6):409-14. PubMed ID: 16054090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular oxygen sensing need in CNS function: physiological and pathological implications.
    Acker T; Acker H
    J Exp Biol; 2004 Aug; 207(Pt 18):3171-88. PubMed ID: 15299039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species.
    Goyal P; Weissmann N; Grimminger F; Hegel C; Bader L; Rose F; Fink L; Ghofrani HA; Schermuly RT; Schmidt HH; Seeger W; Hänze J
    Free Radic Biol Med; 2004 May; 36(10):1279-88. PubMed ID: 15110393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing.
    Guzy RD; Hoyos B; Robin E; Chen H; Liu L; Mansfield KD; Simon MC; Hammerling U; Schumacker PT
    Cell Metab; 2005 Jun; 1(6):401-8. PubMed ID: 16054089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The NOX on pulmonary hypertension.
    Sanders KA; Hoidal JR
    Circ Res; 2007 Aug; 101(3):224-6. PubMed ID: 17673680
    [No Abstract]   [Full Text] [Related]  

  • 11. The oxygen sensing signal cascade under the influence of reactive oxygen species.
    Acker H
    Philos Trans R Soc Lond B Biol Sci; 2005 Dec; 360(1464):2201-10. PubMed ID: 16321790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide and mitochondrial signaling: from physiology to pathophysiology.
    Erusalimsky JD; Moncada S
    Arterioscler Thromb Vasc Biol; 2007 Dec; 27(12):2524-31. PubMed ID: 17885213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen sensing in the body.
    Lahiri S; Roy A; Baby SM; Hoshi T; Semenza GL; Prabhakar NR
    Prog Biophys Mol Biol; 2006 Jul; 91(3):249-86. PubMed ID: 16137743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension.
    Bonnet S; Michelakis ED; Porter CJ; Andrade-Navarro MA; Thébaud B; Bonnet S; Haromy A; Harry G; Moudgil R; McMurtry MS; Weir EK; Archer SL
    Circulation; 2006 Jun; 113(22):2630-41. PubMed ID: 16735674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondria and cellular oxygen sensing in the HIF pathway.
    Taylor CT
    Biochem J; 2008 Jan; 409(1):19-26. PubMed ID: 18062771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-sensing in tumors.
    Verma A
    Curr Opin Clin Nutr Metab Care; 2006 Jul; 9(4):366-78. PubMed ID: 16778564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascular adaptations to hypoxia: molecular and cellular mechanisms regulating vascular tone.
    Paffett ML; Walker BR
    Essays Biochem; 2007; 43():105-19. PubMed ID: 17705796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide and reactive oxygen species exert opposing effects on the stability of hypoxia-inducible factor-1alpha (HIF-1alpha) in explants of human pial arteries.
    Wellman TL; Jenkins J; Penar PL; Tranmer B; Zahr R; Lounsbury KM
    FASEB J; 2004 Feb; 18(2):379-81. PubMed ID: 14657004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature.
    Mittal M; Roth M; König P; Hofmann S; Dony E; Goyal P; Selbitz AC; Schermuly RT; Ghofrani HA; Kwapiszewska G; Kummer W; Klepetko W; Hoda MA; Fink L; Hänze J; Seeger W; Grimminger F; Schmidt HH; Weissmann N
    Circ Res; 2007 Aug; 101(3):258-67. PubMed ID: 17585072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetics of mitochondrial electron transport chain in regulating oxygen sensing.
    Bell EL; Chandel NS
    Methods Enzymol; 2007; 435():447-61. PubMed ID: 17998068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.