BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 14980208)

  • 1. SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization.
    Verderio C; Pozzi D; Pravettoni E; Inverardi F; Schenk U; Coco S; Proux-Gillardeaux V; Galli T; Rossetto O; Frassoni C; Matteoli M
    Neuron; 2004 Feb; 41(4):599-610. PubMed ID: 14980208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the t-SNARE SNAP-25 in action potential-dependent calcium signaling and expression in GABAergic and glutamatergic neurons.
    Tafoya LC; Shuttleworth CW; Yanagawa Y; Obata K; Wilson MC
    BMC Neurosci; 2008 Oct; 9():105. PubMed ID: 18959796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and function of SNAP-25 as a universal SNARE component in GABAergic neurons.
    Tafoya LC; Mameli M; Miyashita T; Guzowski JF; Valenzuela CF; Wilson MC
    J Neurosci; 2006 Jul; 26(30):7826-38. PubMed ID: 16870728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of motor nerve terminal remodeling unveiled using SNARE-cleaving botulinum toxins: the extent and duration are dictated by the sites of SNAP-25 truncation.
    Meunier FA; Lisk G; Sesardic D; Dolly JO
    Mol Cell Neurosci; 2003 Apr; 22(4):454-66. PubMed ID: 12727443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of SNAP-25 immunoreactivity in hippocampal inhibitory neurons during development in culture and in situ.
    Frassoni C; Inverardi F; Coco S; Ortino B; Grumelli C; Pozzi D; Verderio C; Matteoli M
    Neuroscience; 2005; 131(4):813-23. PubMed ID: 15749336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic calcium dynamics control botulinum toxin A susceptibility in distinct neuronal populations.
    Grumelli C; Corradini I; Matteoli M; Verderio C
    Cell Calcium; 2010 May; 47(5):419-24. PubMed ID: 20304487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gbetagamma acts at the C terminus of SNAP-25 to mediate presynaptic inhibition.
    Gerachshenko T; Blackmer T; Yoon EJ; Bartleson C; Hamm HE; Alford S
    Nat Neurosci; 2005 May; 8(5):597-605. PubMed ID: 15834421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca(2+)-evoked synaptic transmission and neurotransmitter receptor levels are impaired in the forebrain of trkb (-/-) mice.
    Carmona MA; Martínez A; Soler A; Blasi J; Soriano E; Aguado F
    Mol Cell Neurosci; 2003 Feb; 22(2):210-26. PubMed ID: 12676531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis.
    Zhang X; Kim-Miller MJ; Fukuda M; Kowalchyk JA; Martin TF
    Neuron; 2002 May; 34(4):599-611. PubMed ID: 12062043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Botulinum neurotoxin A blocks synaptic vesicle exocytosis but not endocytosis at the nerve terminal.
    Neale EA; Bowers LM; Jia M; Bateman KE; Williamson LC
    J Cell Biol; 1999 Dec; 147(6):1249-60. PubMed ID: 10601338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gβγ and the C terminus of SNAP-25 are necessary for long-term depression of transmitter release.
    Zhang XL; Upreti C; Stanton PK
    PLoS One; 2011; 6(5):e20500. PubMed ID: 21633701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Traffic of botulinum toxins A and E in excitatory and inhibitory neurons.
    Verderio C; Grumelli C; Raiteri L; Coco S; Paluzzi S; Caccin P; Rossetto O; Bonanno G; Montecucco C; Matteoli M
    Traffic; 2007 Feb; 8(2):142-53. PubMed ID: 17241445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced SNAP-25 alters short-term plasticity at developing glutamatergic synapses.
    Antonucci F; Corradini I; Morini R; Fossati G; Menna E; Pozzi D; Pacioni S; Verderio C; Bacci A; Matteoli M
    EMBO Rep; 2013 Jul; 14(7):645-51. PubMed ID: 23732542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-dependent acetylcholine release from Xenopus oocytes: simultaneous ionic currents and acetylcholine release recordings.
    Aleu J; Blasi J; Solsona C; Marsal J
    Eur J Neurosci; 2002 Oct; 16(8):1442-8. PubMed ID: 12405957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of presynaptic neuronal excitability by correlated presynaptic and postsynaptic spiking.
    Ganguly K; Kiss L; Poo M
    Nat Neurosci; 2000 Oct; 3(10):1018-26. PubMed ID: 11017175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitatory effect of glutamate exocytosis from rat cerebrocortical nerve terminals by alpha-tocopherol, a major vitamin E component.
    Yang TT; Wang SJ
    Neurochem Int; 2008 May; 52(6):979-89. PubMed ID: 18037536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BDNF up-regulates evoked GABAergic transmission in developing hippocampus by potentiating presynaptic N- and P/Q-type Ca2+ channels signalling.
    Baldelli P; Novara M; Carabelli V; Hernández-Guijo JM; Carbone E
    Eur J Neurosci; 2002 Dec; 16(12):2297-310. PubMed ID: 12492424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sensitivity of catecholamine release to botulinum toxin C1 and E suggests selective targeting of vesicles set into the readily releasable pool.
    Stigliani S; Raiteri L; Fassio A; Bonanno G
    J Neurochem; 2003 Apr; 85(2):409-21. PubMed ID: 12675917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osthole and imperatorin, the active constituents of Cnidium monnieri (L.) Cusson, facilitate glutamate release from rat hippocampal nerve terminals.
    Wang SJ; Lin TY; Lu CW; Huang WJ
    Neurochem Int; 2008 Dec; 53(6-8):416-23. PubMed ID: 18951936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of calcium- and SNARE-dependent release of CuZn superoxide dismutase from rat pituitary GH3 cells and synaptosomes in response to depolarization.
    Santillo M; Secondo A; Serù R; Damiano S; Garbi C; Taverna E; Rosa P; Giovedì S; Benfenati F; Mondola P
    J Neurochem; 2007 Aug; 102(3):679-85. PubMed ID: 17403136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.