These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 14980400)

  • 1. Shape determination of attached fluctuating phospholipid vesicles.
    Sevsek F; Gomisccek G
    Comput Methods Programs Biomed; 2004 Mar; 73(3):189-94. PubMed ID: 14980400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heart rate variability--a shape analysis of Lorenz plots.
    Sevsek F; Jakovljević M
    Cell Mol Biol Lett; 2002; 7(1):159-61. PubMed ID: 11944077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy.
    Cherney DP; Bridges TE; Harris JM
    Anal Chem; 2004 Sep; 76(17):4920-8. PubMed ID: 15373424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vesicle shapes from molecular dynamics simulations.
    Markvoort AJ; van Santen RA; Hilbers PA
    J Phys Chem B; 2006 Nov; 110(45):22780-5. PubMed ID: 17092028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape transformation of giant phospholipid vesicles at high concentrations of C12E8.
    Mavcic B; Babnik B; Iglic A; Kanduser M; Slivnik T; Kralj-Iglic V
    Bioelectrochemistry; 2004 Jun; 63(1-2):183-7. PubMed ID: 15110270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape and size of giant unilamellar phospholipid vesicles containing cardiolipin.
    Tomsiè N; Babnik B; Lombardo D; Mavcic B; Kanduser M; Iglic A; Kralj-Iglic V
    J Chem Inf Model; 2005; 45(6):1676-9. PubMed ID: 16309272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension.
    Peterlin P; Arrigler V; Kogej K; Svetina S; Walde P
    Chem Phys Lipids; 2009 Jun; 159(2):67-76. PubMed ID: 19477312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated optic disk boundary detection by modified active contour model.
    Xu J; Chutatape O; Chew P
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):473-82. PubMed ID: 17355059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated tracking and analysis of phospholipid vesicle contours in phase contrast microscopy images.
    Usenik P; Vrtovec T; Pernuš F; Likar B
    Med Biol Eng Comput; 2011 Aug; 49(8):957-66. PubMed ID: 21710319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-dependent transitions during self-assembly of phospholipid membranes on mica, silica, and glass.
    Benes M; Billy D; Benda A; Speijer H; Hof M; Hermens WT
    Langmuir; 2004 Nov; 20(23):10129-37. PubMed ID: 15518504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape of vesicles in flow--theoretical analysis.
    Sevsek F
    Cell Mol Biol Lett; 2002; 7(1):157-8. PubMed ID: 11944076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug permeability across a phospholipid vesicle based barrier: 3. Characterization of drug-membrane interactions and the effect of agitation on the barrier integrity and on the permeability.
    Flaten GE; Skar M; Luthman K; Brandl M
    Eur J Pharm Sci; 2007 Mar; 30(3-4):324-32. PubMed ID: 17204409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WARP: accurate retrieval of shapes using phase of fourier descriptors and time warping distance.
    Bartolini I; Ciaccia P; Patella M
    IEEE Trans Pattern Anal Mach Intell; 2005 Jan; 27(1):142-7. PubMed ID: 15628276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotation of giant phospholipid vesicles in an uniform shear flow.
    Razpet A; Gomiscek G; Arrigler V; Svetina S; Zeks B
    Pflugers Arch; 2000; 439(3 Suppl):R141-2. PubMed ID: 10653171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The frequency dependence of phospholipid vesicle shapes in an external electric field.
    Peterlin P; Svetina S; Zeks B
    Pflugers Arch; 2000; 439(3 Suppl):R139-40. PubMed ID: 10653170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser tweezer deformation of giant unilamellar vesicles.
    Poole C; Losert W
    Methods Mol Biol; 2007; 400():389-404. PubMed ID: 17951748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and frequency domain techniques for segmentation of Placido images and accuracy implications for videokeratography.
    de Carvalho LA; Bruno OM
    Comput Methods Programs Biomed; 2005 Aug; 79(2):111-9. PubMed ID: 16006006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-automated CT segmentation using optic flow and Fourier interpolation techniques.
    Huang TC; Zhang G; Guerrero T; Starkschall G; Lin KP; Forster K
    Comput Methods Programs Biomed; 2006 Dec; 84(2-3):124-34. PubMed ID: 17027116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the interaction of coagulation factors with phospholipid vesicle surfaces by surface plasma resonance.
    Wikström A; Deinum J
    Anal Biochem; 2007 Mar; 362(1):98-107. PubMed ID: 17239338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A non-gradient based algorithm for the determination of surface tension from a pendant drop: application to low Bond number drop shapes.
    Alvarez NJ; Walker LM; Anna SL
    J Colloid Interface Sci; 2009 May; 333(2):557-62. PubMed ID: 19261289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.