These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

520 related articles for article (PubMed ID: 14980406)

  • 21. Cortical and interfacial bone changes around a non-cemented hip implant: simulations using a combined strain/damage remodelling algorithm.
    Scannell PT; Prendergast PJ
    Med Eng Phys; 2009 May; 31(4):477-88. PubMed ID: 19188086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fracture Toughness and Fatigue Crack Growth Analyses on a Biomedical Ti-27Nb Alloy under Constant Amplitude Loading Using Extended Finite Element Modelling.
    Abdellah MY; Alharthi H
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374650
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical analysis of titanium elastic nail fixation in a pediatric femur fracture model.
    Li Y; Stabile KJ; Shilt JS
    J Pediatr Orthop; 2008 Dec; 28(8):874-8. PubMed ID: 19034181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fracture mechanics principles applied to implant medical devices--a review.
    Chwirut DJ; Regnault WF
    Med Prog Technol; 1988-1989; 14(3-4):193-203. PubMed ID: 2978592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computer simulation on fatigue behavior of cemented hip prostheses: a physiological model.
    Hung JP; Chen JH; Chiang HL; Wu JS
    Comput Methods Programs Biomed; 2004 Nov; 76(2):103-13. PubMed ID: 15451160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of Colles' fracture load in human radius using cohesive finite element modeling.
    Ural A
    J Biomech; 2009 Jan; 42(1):22-8. PubMed ID: 19056085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of loading frequency on implant failure under cyclic fatigue conditions.
    Karl M; Kelly JR
    Dent Mater; 2009 Nov; 25(11):1426-32. PubMed ID: 19643468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigations of subcritical crack propagation of the Empress 2 all-ceramic system.
    Mitov G; Lohbauer U; Rabbo MA; Petschelt A; Pospiech P
    Dent Mater; 2008 Feb; 24(2):267-73. PubMed ID: 17631955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fatigue failure of as-received and retrieved NiTi orthodontic archwires.
    Bourauel C; Scharold W; Jäger A; Eliades T
    Dent Mater; 2008 Aug; 24(8):1095-101. PubMed ID: 18289660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fracture length scales in human cortical bone: the necessity of nonlinear fracture models.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Biomaterials; 2006 Mar; 27(9):2095-113. PubMed ID: 16271757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite element modeling for strain rate dependency of fracture resistance in compact bone.
    Charoenphan S; Polchai A
    J Biomech Eng; 2007 Feb; 129(1):20-5. PubMed ID: 17227094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A micromechanical model to predict damage and failure in biological tissues. Application to the ligament-to-bone attachment in the human knee joint.
    Subit D; Chabrand P; Masson C
    J Biomech; 2009 Feb; 42(3):261-5. PubMed ID: 19135201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparative FEA of the debonding process in different concepts of cemented hip implants.
    Pérez MA; García-Aznar JM; Doblaré M; Seral B; Seral F
    Med Eng Phys; 2006 Jul; 28(6):525-33. PubMed ID: 16257253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of framework shape on the fracture strength of implant-supported all-ceramic fixed partial dentures in the molar region.
    Tsumita M; Kokubo Y; Vult von Steyern P; Fukushima S
    J Prosthodont; 2008 Jun; 17(4):274-85. PubMed ID: 18205740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting in vivo clinical performance of anterior cruciate ligament fixation methods from in vitro analysis: industrial tests of fatigue life and tolerance limits are more useful than other cyclic loading parameters.
    Saweeres ES; Kuiper JH; Evans RO; Richardson JB; White SH
    Am J Sports Med; 2005 May; 33(5):666-73. PubMed ID: 15722271
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Restoration of non-carious cervical lesions Part II. Restorative material selection to minimise fracture.
    Ichim IP; Schmidlin PR; Li Q; Kieser JA; Swain MV
    Dent Mater; 2007 Dec; 23(12):1562-9. PubMed ID: 17391747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metallic open-cell foams--a promising approach to fabricating good medical implants.
    Ohrndorf A; Krupp U; Christ HJ
    Technol Health Care; 2006; 14(4-5):201-8. PubMed ID: 17065742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of bond quality on failure load of leucite- and lithia disilicate-based ceramics.
    Clelland NL; Ramirez A; Katsube N; Seghi RR
    J Prosthet Dent; 2007 Jan; 97(1):18-24. PubMed ID: 17280887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.