These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 14980418)
1. Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion. Mauney JR; Kaplan DL; Volloch V Biomaterials; 2004 Jul; 25(16):3233-43. PubMed ID: 14980418 [TBL] [Abstract][Full Text] [Related]
2. Matrix-mediated retention of adipogenic differentiation potential by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion. Mauney JR; Volloch V; Kaplan DL Biomaterials; 2005 Nov; 26(31):6167-75. PubMed ID: 15913765 [TBL] [Abstract][Full Text] [Related]
3. Matrix-mediated retention of in vitro osteogenic differentiation potential and in vivo bone-forming capacity by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion. Mauney JR; Kirker-Head C; Abrahamson L; Gronowicz G; Volloch V; Kaplan DL J Biomed Mater Res A; 2006 Dec; 79(3):464-75. PubMed ID: 16752403 [TBL] [Abstract][Full Text] [Related]
4. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Mauney JR; Jaquiéry C; Volloch V; Heberer M; Martin I; Kaplan DL Biomaterials; 2005 Jun; 26(16):3173-85. PubMed ID: 15603812 [TBL] [Abstract][Full Text] [Related]
5. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Mauney JR; Sjostorm S; Blumberg J; Horan R; O'Leary JP; Vunjak-Novakovic G; Volloch V; Kaplan DL Calcif Tissue Int; 2004 May; 74(5):458-68. PubMed ID: 14961210 [TBL] [Abstract][Full Text] [Related]
6. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
7. Human bone marrow stromal cells: In vitro expansion and differentiation for bone engineering. Ciapetti G; Ambrosio L; Marletta G; Baldini N; Giunti A Biomaterials; 2006 Dec; 27(36):6150-60. PubMed ID: 16965811 [TBL] [Abstract][Full Text] [Related]
8. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold. Valarmathi MT; Yost MJ; Goodwin RL; Potts JD Biomaterials; 2008 May; 29(14):2203-16. PubMed ID: 18289664 [TBL] [Abstract][Full Text] [Related]
9. [Induction of bone tissue on different matrices: an in vitro and a in vivo pilot study in the SCID mouse]. Kasten P; Luginbühl R; Vogel J; Niemeyer P; Weiss S; Van Griensven M; Krettek C; Bohner M; Bosch U; Tonak M Z Orthop Ihre Grenzgeb; 2004; 142(4):467-75. PubMed ID: 15346310 [TBL] [Abstract][Full Text] [Related]
10. The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Schneider RK; Puellen A; Kramann R; Raupach K; Bornemann J; Knuechel R; Pérez-Bouza A; Neuss S Biomaterials; 2010 Jan; 31(3):467-80. PubMed ID: 19815272 [TBL] [Abstract][Full Text] [Related]
11. Homing efficiency and hematopoietic reconstitution of bone marrow-derived stroma cells expanded by recombinant human macrophage-colony stimulating factor in vitro. Jin-Xiang F; Xiaofeng S; Jun-Chuan Q; Yan G; Xue-Guang Z Exp Hematol; 2004 Dec; 32(12):1204-11. PubMed ID: 15588945 [TBL] [Abstract][Full Text] [Related]
12. Cell processing engineering for ex-vivo expansion of hematopoietic cells. Takagi M J Biosci Bioeng; 2005 Mar; 99(3):189-96. PubMed ID: 16233777 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study. Liu G; Sun J; Li Y; Zhou H; Cui L; Liu W; Cao Y Calcif Tissue Int; 2008 Sep; 83(3):176-85. PubMed ID: 18704250 [TBL] [Abstract][Full Text] [Related]
14. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix. Shen FH; Zeng Q; Lv Q; Choi L; Balian G; Li X; Laurencin CT Spine J; 2006; 6(6):615-23. PubMed ID: 17088192 [TBL] [Abstract][Full Text] [Related]
15. Characterization of growth and osteogenic differentiation of rabbit bone marrow stromal cells. Roostaeian J; Carlsen B; Simhaee D; Jarrahy R; Huang W; Ishida K; Rudkin GH; Yamaguchi DT; Miller TA J Surg Res; 2006 Jun; 133(2):76-83. PubMed ID: 16360178 [TBL] [Abstract][Full Text] [Related]
16. The promotion of osteoblastic differentiation of rat bone marrow stromal cells by a polyvalent plant mosaic virus. Kaur G; Valarmathi MT; Potts JD; Wang Q Biomaterials; 2008 Oct; 29(30):4074-81. PubMed ID: 18649940 [TBL] [Abstract][Full Text] [Related]
17. The effect of bioactive glasses on bone marrow stromal cells differentiation. Bosetti M; Cannas M Biomaterials; 2005 Jun; 26(18):3873-9. PubMed ID: 15626435 [TBL] [Abstract][Full Text] [Related]
18. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Shi S; Gronthos S; Chen S; Reddi A; Counter CM; Robey PG; Wang CY Nat Biotechnol; 2002 Jun; 20(6):587-91. PubMed ID: 12042862 [TBL] [Abstract][Full Text] [Related]
19. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Datta N; Holtorf HL; Sikavitsas VI; Jansen JA; Mikos AG Biomaterials; 2005 Mar; 26(9):971-7. PubMed ID: 15369685 [TBL] [Abstract][Full Text] [Related]
20. Periodically discontinuous induction of bone marrow stem cells toward osteogenic differentiation in vitro. Wang Z; Peng R; Ding J Biotechnol Prog; 2008; 24(3):766-72. PubMed ID: 18293998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]