These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 14980974)

  • 1. Identification of biomechanical factors involved in stem shape variability between apricot tree varieties.
    Almeras T; Costes E; Salles JC
    Ann Bot; 2004 Apr; 93(4):455-68. PubMed ID: 14980974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical design and long-term stability of trees: morphological and wood traits involved in the balance between weight increase and the gravitropic reaction.
    Alméras T; Fournier M
    J Theor Biol; 2009 Feb; 256(3):370-81. PubMed ID: 19013473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of carbohydrate supply on stem growth, wood and respired CO2 delta13C: assessment by experimental girdling.
    Maunoury-Danger F; Fresneau C; Eglin T; Berveiller D; François C; Lelarge-Trouverie C; Damesin C
    Tree Physiol; 2010 Jul; 30(7):818-30. PubMed ID: 20504776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of tree size and competition on tension wood production over time in beech plantations and assessing relative gravitropic response with a biomechanical model.
    Dassot M; Fournier M; Ningre F; Constant T
    Am J Bot; 2012 Sep; 99(9):1427-35. PubMed ID: 22922395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth stress controls negative gravitropism in woody plant stems.
    Yamamoto H; Yoshida M; Okuyama T
    Planta; 2002 Dec; 216(2):280-92. PubMed ID: 12447542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graviresponses in herb and trees: a major role for the redistribution of tissue and growth stresses.
    Hejnowicz Z
    Planta; 1997 Sep; 203(Suppl 1):S136-46. PubMed ID: 11540322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative biomechanics for tree ecology: beyond wood density and strength.
    Fournier M; Dlouhá J; Jaouen G; Almeras T
    J Exp Bot; 2013 Nov; 64(15):4793-815. PubMed ID: 24014867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fresh-wood bending: linking the mechanical and growth properties of a Norway spruce stem.
    Lundström T; Heiz U; Stoffel M; Stöckli V
    Tree Physiol; 2007 Sep; 27(9):1229-41. PubMed ID: 17545123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.
    Michelot A; Simard S; Rathgeber C; Dufrêne E; Damesin C
    Tree Physiol; 2012 Aug; 32(8):1033-45. PubMed ID: 22718524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest.
    Mund M; Kutsch WL; Wirth C; Kahl T; Knohl A; Skomarkova MV; Schulze ED
    Tree Physiol; 2010 Jun; 30(6):689-704. PubMed ID: 20453002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical analysis of the strains generated by water tension in plant stems. Part II: strains in wood and bark and apparent compliance.
    Alméras T
    Tree Physiol; 2008 Oct; 28(10):1513-23. PubMed ID: 18708333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response to stem bending in forest shrubs: stem or shoot reorientation and shoot release.
    Wilson BF
    Can J Bot; 1997 Oct; 75(10):1643-8. PubMed ID: 11540964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wood properties and trunk allometry of co-occurring rainforest canopy trees in a cyclone-prone environment.
    Read J; Evans R; Sanson GD; Kerr S; Jaffré T
    Am J Bot; 2011 Nov; 98(11):1762-72. PubMed ID: 21984616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical differences in the stem straightening process among Pinus pinaster provenances. A new approach for early selection of stem straightness.
    Sierra-de-Grado R; Pando V; Martínez-Zurimendi P; Peñalvo A; Báscones E; Moulia B
    Tree Physiol; 2008 Jun; 28(6):835-46. PubMed ID: 18381264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical control of beech pole verticality (Fagus sylvatica) before and after thinning: theoretical modelling and ground-truth data using terrestrial LiDAR.
    Noyer E; Fournier M; Constant T; Collet C; Dlouhá J
    Am J Bot; 2019 Feb; 106(2):187-198. PubMed ID: 30742709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feeling stretched or compressed? The multiple mechanosensitive responses of wood formation to bending.
    Roignant J; Badel É; Leblanc-Fournier N; Brunel-Michac N; Ruelle J; Moulia B; Decourteix M
    Ann Bot; 2018 May; 121(6):1151-1161. PubMed ID: 29373642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of thinning and stem height on the drought response of radial stem growth and isotopic composition of Norway spruce (Picea abies).
    Sohn JA; Kohler M; Gessler A; Bauhus J
    Tree Physiol; 2012 Oct; 32(10):1199-213. PubMed ID: 22961177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stem-righting mechanism in gymnosperm trees deduced from limitations in compression wood development.
    Yamashita S; Yoshida M; Takayama S; Okuyama T
    Ann Bot; 2007 Mar; 99(3):487-93. PubMed ID: 17218339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to become a tree without wood--biomechanical analysis of the stem of Carica papaya L.
    Kempe A; Lautenschläger T; Lange A; Neinhuis C
    Plant Biol (Stuttg); 2014 Jan; 16(1):264-71. PubMed ID: 23656471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The gravitropic response of poplar trunks: key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation.
    Coutand C; Fournier M; Moulia B
    Plant Physiol; 2007 Jun; 144(2):1166-80. PubMed ID: 17468227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.