BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 14981152)

  • 1. The helix-turn-helix motif of bacterial insertion sequence IS911 transposase is required for DNA binding.
    Rousseau P; Gueguen E; Duval-Valentin G; Chandler M
    Nucleic Acids Res; 2004; 32(4):1335-44. PubMed ID: 14981152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple oligomerisation domains in the IS911 transposase: a leucine zipper motif is essential for activity.
    Haren L; Polard P; Ton-Hoang B; Chandler M
    J Mol Biol; 1998; 283(1):29-41. PubMed ID: 9761671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the N-terminal DNA binding domain of the IS30 transposase.
    Nagy Z; Szabó M; Chandler M; Olasz F
    Mol Microbiol; 2004 Oct; 54(2):478-88. PubMed ID: 15469518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of two domains with helix-turn-helix and zinc finger motifs in the binding of IS1 transposase to terminal inverted repeats.
    Ohta S; Yoshimura E; Ohtsubo E
    Mol Microbiol; 2004 Jul; 53(1):193-202. PubMed ID: 15225314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional domains of the IS1 transposase: analysis in vivo and in vitro.
    Ton-Hoang B; Turlan C; Chandler M
    Mol Microbiol; 2004 Sep; 53(5):1529-43. PubMed ID: 15387827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The terminal inverted repeats of IS911: requirements for synaptic complex assembly and activity.
    Normand C; Duval-Valentin G; Haren L; Chandler M
    J Mol Biol; 2001 May; 308(5):853-71. PubMed ID: 11352577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure of the Mu end DNA-binding ibeta subdomain of phage Mu transposase: modular DNA recognition by two tethered domains.
    Schumacher S; Clubb RT; Cai M; Mizuuchi K; Clore GM; Gronenborn AM
    EMBO J; 1997 Dec; 16(24):7532-41. PubMed ID: 9405381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IS911 transposition is regulated by protein-protein interactions via a leucine zipper motif.
    Haren L; Normand C; Polard P; Alazard R; Chandler M
    J Mol Biol; 2000 Feb; 296(3):757-68. PubMed ID: 10677279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of the IS
    Harmer CJ; Hall RM
    Microb Genom; 2019 Sep; 5(9):. PubMed ID: 31486766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of newly identified IS3, IS4 and IS30 insertion sequence-like elements in Mycoplasma bovis and their possible roles in genome plasticity.
    Lysnyansky I; Calcutt MJ; Ben-Barak I; Ron Y; Levisohn S; Methé BA; Yogev D
    FEMS Microbiol Lett; 2009 May; 294(2):172-82. PubMed ID: 19416360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of the I gamma subdomain of the Mu end DNA-binding domain of phage Mu transposase.
    Clubb RT; Schumacher S; Mizuuchi K; Gronenborn AM; Clore GM
    J Mol Biol; 1997 Oct; 273(1):19-25. PubMed ID: 9367742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pogo transposase contains a putative helix-turn-helix DNA binding domain that recognises a 12 bp sequence within the terminal inverted repeats.
    Wang H; Hartswood E; Finnegan DJ
    Nucleic Acids Res; 1999 Jan; 27(2):455-61. PubMed ID: 9862965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA binding domains and nuclear localization signal of LEDGF: contribution of two helix-turn-helix (HTH)-like domains and a stretch of 58 amino acids of the N-terminal to the trans-activation potential of LEDGF.
    Singh DP; Kubo E; Takamura Y; Shinohara T; Kumar A; Chylack LT; Fatma N
    J Mol Biol; 2006 Jan; 355(3):379-94. PubMed ID: 16318853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of IS911 target selection: how OrfA may ensure IS dispersion.
    Rousseau P; Loot C; Guynet C; Ah-Seng Y; Ton-Hoang B; Chandler M
    Mol Microbiol; 2007 Mar; 63(6):1701-9. PubMed ID: 17367389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-binding activity and subunit interaction of the mariner transposase.
    Zhang L; Dawson A; Finnegan DJ
    Nucleic Acids Res; 2001 Sep; 29(17):3566-75. PubMed ID: 11522826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the domains for DNA binding and transactivation function of C protein from bacteriophage Mu.
    Paul BD; Kanhere A; Chakraborty A; Bansal M; Nagaraja V
    Proteins; 2003 Aug; 52(2):272-82. PubMed ID: 12833550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the transposase encoded by IS256, the prototype of a major family of bacterial insertion sequence elements.
    Hennig S; Ziebuhr W
    J Bacteriol; 2010 Aug; 192(16):4153-63. PubMed ID: 20543074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining functional regions of the IS903 transposase.
    Tavakoli NP; DeVost J; Derbyshire KM
    J Mol Biol; 1997 Dec; 274(4):491-504. PubMed ID: 9417930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linearization and transposition of circular molecules of insertion sequence IS3.
    Sekine Y; Aihara K; Ohtsubo E
    J Mol Biol; 1999 Nov; 294(1):21-34. PubMed ID: 10556026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transposase-transposase interactions in MOS1 complexes: a biochemical approach.
    Carpentier G; Jaillet J; Pflieger A; Adet J; Renault S; Augé-Gouillou C
    J Mol Biol; 2011 Jan; 405(4):892-908. PubMed ID: 21110982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.