These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 14981306)
1. Purification, characterization, and subsite affinities of Thermoactinomyces vulgaris R-47 maltooligosaccharide-metabolizing enzyme homologous to glucoamylases. Ichikawa K; Tonozuka T; Uotsu-Tomita R; Akeboshi H; Nishikawa A; Sakano Y Biosci Biotechnol Biochem; 2004 Feb; 68(2):413-20. PubMed ID: 14981306 [TBL] [Abstract][Full Text] [Related]
2. Crystallization and preliminary X-ray analysis of Thermoactinomyces vulgaris R-47 maltooligosaccharide-metabolizing enzyme homologous to glucoamylase. Ichikawa K; Tonozuka T; Mizuno M; Tanabe Y; Kamitori S; Nishikawa A; Sakano Y Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Mar; 61(Pt 3):302-4. PubMed ID: 16511025 [TBL] [Abstract][Full Text] [Related]
3. Novel glucoamylase-type enzymes from Thermoactinomyces vulgaris and Methanococcus jannaschii whose genes are found in the flanking region of the alpha-amylase genes. Uotsu-Tomita R; Tonozuka T; Sakai H; Sakano Y Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):465-73. PubMed ID: 11549021 [TBL] [Abstract][Full Text] [Related]
4. Catalytic properties of two Rhizopus oryzae 99-880 glucoamylase enzymes without starch binding domains expressed in Pichia pastoris. Mertens JA; Braker JD; Jordan DB Appl Biochem Biotechnol; 2010 Dec; 162(8):2197-213. PubMed ID: 20549574 [TBL] [Abstract][Full Text] [Related]
5. Calculation of subsite affinities of human small intestinal glucoamylase-maltase. Heymann H; Günther S Biol Chem Hoppe Seyler; 1994 Jul; 375(7):451-5. PubMed ID: 7945994 [TBL] [Abstract][Full Text] [Related]
6. Catalytic mechanism of glucoamylase probed by mutagenesis in conjunction with hydrolysis of alpha-D-glucopyranosyl fluoride and maltooligosaccharides. Sierks MR; Svensson B Biochemistry; 1996 Feb; 35(6):1865-71. PubMed ID: 8639668 [TBL] [Abstract][Full Text] [Related]
7. Comparative study of biochemical properties of glucoamylases from the filamentous fungi Penicillium and Aspergillus. Volkov PV; Rozhkova AM; Semenova MV; Zorov IN; Sinitsyn AP Biochemistry (Mosc); 2013 Oct; 78(10):1180-9. PubMed ID: 24237153 [TBL] [Abstract][Full Text] [Related]
8. Human small intestinal sucrase-isomaltase: different binding patterns for malto- and isomaltooligosaccharides. Heymann H; Breitmeier D; Günther S Biol Chem Hoppe Seyler; 1995 Apr; 376(4):249-53. PubMed ID: 7626234 [TBL] [Abstract][Full Text] [Related]
9. Minimizing nonproductive substrate binding: a new look at glucoamylase subsite affinities. Natarajan SK; Sierks MR Biochemistry; 1997 Dec; 36(48):14946-55. PubMed ID: 9398219 [TBL] [Abstract][Full Text] [Related]
10. Purification and characterization of heterogeneous glucoamylases from Monascus purpureus. Tachibana S; Yasuda M Biosci Biotechnol Biochem; 2007 Oct; 71(10):2573-6. PubMed ID: 17928688 [TBL] [Abstract][Full Text] [Related]
11. Purification and substrate specificity of honeybee, Apis mellifera L., alpha-glucosidase III. Nishimoto M; Kubota M; Tsuji M; Mori H; Kimura A; Matsui H; Chiba S Biosci Biotechnol Biochem; 2001 Jul; 65(7):1610-6. PubMed ID: 11515546 [TBL] [Abstract][Full Text] [Related]
12. Characterization, subsite mapping and partial amino acid sequence of glucoamylase from the filamentous fungus Trichoderma reesei. Fagerström R; Kalkkinen N Biotechnol Appl Biochem; 1995 Apr; 21(2):223-31. PubMed ID: 7718160 [TBL] [Abstract][Full Text] [Related]
13. An extracellular glucoamylase produced by endophytic fungus EF6. Tangngamsakul P; Karnchanatat A; Sihanonth P; Sangvanich P Prikl Biokhim Mikrobiol; 2011; 47(4):455-61. PubMed ID: 21950121 [TBL] [Abstract][Full Text] [Related]
14. On porcine pancreatic alpha-amylase action: kinetic evidence for the binding of two maltooligosaccharide molecules (maltose, maltotriose and o-nitrophenylmaltoside) by inhibition studies. Correlation with the five-subsite energy profile. Seigner C; Prodanov E; Marchis-Mouren G Eur J Biochem; 1985 Apr; 148(1):161-8. PubMed ID: 3872211 [TBL] [Abstract][Full Text] [Related]
15. Substrate binding mechanism of Glu180-->Gln, Asp176-->Asn, and wild-type glucoamylases from Aspergillus niger. Christensen U; Olsen K; Stoffer BB; Svensson B Biochemistry; 1996 Nov; 35(47):15009-18. PubMed ID: 8942667 [TBL] [Abstract][Full Text] [Related]
16. Enzymes Required for Maltodextrin Catabolism in Enterococcus faecalis Exhibit Novel Activities. Joyet P; Mokhtari A; Riboulet-Bisson E; Blancato VS; Espariz M; Magni C; Hartke A; Deutscher J; Sauvageot N Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455338 [TBL] [Abstract][Full Text] [Related]
17. Purification, biochemical characterization, and gene cloning of a new extracellular thermotolerant and glucose tolerant maltooligosaccharide-forming alpha-amylase from an endophytic ascomycete Fusicoccum sp. BCC4124. Champreda V; Kanokratana P; Sriprang R; Tanapongpipat S; Eurwilaichitr L Biosci Biotechnol Biochem; 2007 Aug; 71(8):2010-20. PubMed ID: 17690465 [TBL] [Abstract][Full Text] [Related]
18. Substrate specificity and subsite affinities of rabbit liver acid alpha-glucosidase. Onodera S; Matsui H; Chiba S J Biochem; 1994 Jul; 116(1):7-11. PubMed ID: 7798188 [TBL] [Abstract][Full Text] [Related]
19. Purification and characterization of a novel cold adapted fungal glucoamylase. Carrasco M; Alcaíno J; Cifuentes V; Baeza M Microb Cell Fact; 2017 May; 16(1):75. PubMed ID: 28464820 [TBL] [Abstract][Full Text] [Related]