BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

604 related articles for article (PubMed ID: 14981657)

  • 1. Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF.
    Borovsky D; Meola SM
    Arch Insect Biochem Physiol; 2004 Mar; 55(3):124-39. PubMed ID: 14981657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feeding the mosquito Aedes aegypti with TMOF and its analogs; effect on trypsin biosynthesis and egg development.
    Borovsky D; Mahmood F
    Regul Pept; 1995 Jun; 57(3):273-81. PubMed ID: 7480877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TMOF-like factor controls the biosynthesis of serine proteases in the larval gut of Heliothis virescens.
    Nauen R; Sorge D; Sterner A; Borovsky D
    Arch Insect Biochem Physiol; 2001 Aug; 47(4):169-80. PubMed ID: 11462221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ace inhibitors and TMOF on growth, development, and trypsin activity of larval Spodoptera littoralis.
    Lemeire E; Borovsky D; Van Camp J; Smagghe G
    Arch Insect Biochem Physiol; 2008 Dec; 69(4):199-208. PubMed ID: 18949805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three indigenous Thai medicinal plants for control of Aedes aegypti and Culex quinquefasciatus.
    Lapcharoen P; Apiwathnasorn C; Komalamisra N; Dekumyoy P; Palakul K; Rongsriyam Y
    Southeast Asian J Trop Med Public Health; 2005; 36 Suppl 4():167-75. PubMed ID: 16438204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A laboratory study of cyromazine on Aedes aegypti and Culex quinquefasciatus and its activity on selected predators of mosquito larvae.
    Nelson FR; Holloway D; Mohamed AK
    J Am Mosq Control Assoc; 1986 Sep; 2(3):296-9. PubMed ID: 3507502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trypsin-modulating oostatic factor: a potential new larvicide for mosquito control.
    Borovsky D
    J Exp Biol; 2003 Nov; 206(Pt 21):3869-75. PubMed ID: 14506222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced activity of an insecticidal protein, trypsin modulating oostatic factor (TMOF), through conjugation with aliphatic polyethylene glycol.
    Jeffers LA; Shen H; Khalil S; Bissinger BW; Brandt A; Gunnoe TB; Roe RM
    Pest Manag Sci; 2012 Jan; 68(1):49-59. PubMed ID: 21710555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.
    Arredondo-Jiménez JI; Valdez-Delgado KM
    Med Vet Entomol; 2006 Dec; 20(4):377-87. PubMed ID: 17199749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of a phenyl pyrazole insecticide, fipronil, to mosquito and chironomid midge larvae in the laboratory.
    Ali A; Nayar JK; Gu WD
    J Am Mosq Control Assoc; 1998 Jun; 14(2):216-8. PubMed ID: 9673927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effectiveness of Trypsin Modulating Oostatic Factor (TMOF) and Combination of TMOF with Bacillus thuringiensis Against Aedes aegypti Larvae in the Laboratory.
    Lau Y; Sulaiman S; Othman H
    Iran J Arthropod Borne Dis; 2011; 5(1):13-9. PubMed ID: 22808406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residual effects of TMOF-Bti formulations against 1(st) instar Aedes aegypti Linnaeus larvae outside laboratory.
    Saiful AN; Lau MS; Sulaiman S; Hidayatulfathi O
    Asian Pac J Trop Biomed; 2012 Apr; 2(4):315-9. PubMed ID: 23569922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass spectrometry and characterization of Aedes aegypti trypsin modulating oostatic factor (TMOF) and its analogs.
    Borovsky D; Carlson DA; Griffin PR; Shabanowitz J; Hunt DF
    Insect Biochem Mol Biol; 1993 Sep; 23(6):703-12. PubMed ID: 8353526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adult longevity of certain mosquito species after larval and pupal exposure to sublethal concentration of an insect growth regulator, hexaflumuron.
    Vasuki V
    Southeast Asian J Trop Med Public Health; 1992 Mar; 23(1):121-4. PubMed ID: 1523463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cyromazin and methoprene on the developmental stages of Anopheles dirus, Aedes aegypti and Culex quinquefasciatus (Diptera : Culicidae).
    Phonchevin T; Upatham ES; Phanthumachinda B; Prasittisuk C; Sukhapanth N
    Southeast Asian J Trop Med Public Health; 1985 Jun; 16(2):240-7. PubMed ID: 2866585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of genes encoding trypsin-like enzymes from Aedes aegypti larvae and identification of digestive enzymes.
    Soares TS; Watanabe RM; Lemos FJ; Tanaka AS
    Gene; 2011 Dec; 489(2):70-5. PubMed ID: 21914468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of specific RIA and ELISA to study trypsin modulating oostatic factor in mosquitoes.
    Borovsky D; Powell CA; Carlson DA
    Arch Insect Biochem Physiol; 1992; 21(1):13-21. PubMed ID: 1421442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory evaluation of 18 repellent compounds as oviposition deterrents of Aedes albopictus and as larvicides of Aedes aegypti, Anopheles quadrimaculatus, and Culex quinquefasciatus.
    Xue RD; Barnard DR; Ali A
    J Am Mosq Control Assoc; 2003 Dec; 19(4):397-403. PubMed ID: 14710743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis and control of mosquito gut proteases.
    Borovsky D
    IUBMB Life; 2003 Aug; 55(8):435-41. PubMed ID: 14609198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aedes aegypti TMOF modulates ecdysteroid production by prothoracic glands of the gypsy moth, Lymantria dispar.
    Gelman DB; Borovsky D
    Arch Insect Biochem Physiol; 2000 Oct; 45(2):60-8. PubMed ID: 11093243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.