These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
599 related articles for article (PubMed ID: 14981657)
1. Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF. Borovsky D; Meola SM Arch Insect Biochem Physiol; 2004 Mar; 55(3):124-39. PubMed ID: 14981657 [TBL] [Abstract][Full Text] [Related]
2. Feeding the mosquito Aedes aegypti with TMOF and its analogs; effect on trypsin biosynthesis and egg development. Borovsky D; Mahmood F Regul Pept; 1995 Jun; 57(3):273-81. PubMed ID: 7480877 [TBL] [Abstract][Full Text] [Related]
3. TMOF-like factor controls the biosynthesis of serine proteases in the larval gut of Heliothis virescens. Nauen R; Sorge D; Sterner A; Borovsky D Arch Insect Biochem Physiol; 2001 Aug; 47(4):169-80. PubMed ID: 11462221 [TBL] [Abstract][Full Text] [Related]
4. Effect of ace inhibitors and TMOF on growth, development, and trypsin activity of larval Spodoptera littoralis. Lemeire E; Borovsky D; Van Camp J; Smagghe G Arch Insect Biochem Physiol; 2008 Dec; 69(4):199-208. PubMed ID: 18949805 [TBL] [Abstract][Full Text] [Related]
5. Three indigenous Thai medicinal plants for control of Aedes aegypti and Culex quinquefasciatus. Lapcharoen P; Apiwathnasorn C; Komalamisra N; Dekumyoy P; Palakul K; Rongsriyam Y Southeast Asian J Trop Med Public Health; 2005; 36 Suppl 4():167-75. PubMed ID: 16438204 [TBL] [Abstract][Full Text] [Related]
6. A laboratory study of cyromazine on Aedes aegypti and Culex quinquefasciatus and its activity on selected predators of mosquito larvae. Nelson FR; Holloway D; Mohamed AK J Am Mosq Control Assoc; 1986 Sep; 2(3):296-9. PubMed ID: 3507502 [TBL] [Abstract][Full Text] [Related]
7. Trypsin-modulating oostatic factor: a potential new larvicide for mosquito control. Borovsky D J Exp Biol; 2003 Nov; 206(Pt 21):3869-75. PubMed ID: 14506222 [TBL] [Abstract][Full Text] [Related]
8. Enhanced activity of an insecticidal protein, trypsin modulating oostatic factor (TMOF), through conjugation with aliphatic polyethylene glycol. Jeffers LA; Shen H; Khalil S; Bissinger BW; Brandt A; Gunnoe TB; Roe RM Pest Manag Sci; 2012 Jan; 68(1):49-59. PubMed ID: 21710555 [TBL] [Abstract][Full Text] [Related]
10. Toxicity of a phenyl pyrazole insecticide, fipronil, to mosquito and chironomid midge larvae in the laboratory. Ali A; Nayar JK; Gu WD J Am Mosq Control Assoc; 1998 Jun; 14(2):216-8. PubMed ID: 9673927 [TBL] [Abstract][Full Text] [Related]
11. Residual effects of TMOF-Bti formulations against 1(st) instar Aedes aegypti Linnaeus larvae outside laboratory. Saiful AN; Lau MS; Sulaiman S; Hidayatulfathi O Asian Pac J Trop Biomed; 2012 Apr; 2(4):315-9. PubMed ID: 23569922 [TBL] [Abstract][Full Text] [Related]
12. The Effectiveness of Trypsin Modulating Oostatic Factor (TMOF) and Combination of TMOF with Bacillus thuringiensis Against Aedes aegypti Larvae in the Laboratory. Lau Y; Sulaiman S; Othman H Iran J Arthropod Borne Dis; 2011; 5(1):13-9. PubMed ID: 22808406 [TBL] [Abstract][Full Text] [Related]
13. Mass spectrometry and characterization of Aedes aegypti trypsin modulating oostatic factor (TMOF) and its analogs. Borovsky D; Carlson DA; Griffin PR; Shabanowitz J; Hunt DF Insect Biochem Mol Biol; 1993 Sep; 23(6):703-12. PubMed ID: 8353526 [TBL] [Abstract][Full Text] [Related]
14. Adult longevity of certain mosquito species after larval and pupal exposure to sublethal concentration of an insect growth regulator, hexaflumuron. Vasuki V Southeast Asian J Trop Med Public Health; 1992 Mar; 23(1):121-4. PubMed ID: 1523463 [TBL] [Abstract][Full Text] [Related]
15. Effects of cyromazin and methoprene on the developmental stages of Anopheles dirus, Aedes aegypti and Culex quinquefasciatus (Diptera : Culicidae). Phonchevin T; Upatham ES; Phanthumachinda B; Prasittisuk C; Sukhapanth N Southeast Asian J Trop Med Public Health; 1985 Jun; 16(2):240-7. PubMed ID: 2866585 [TBL] [Abstract][Full Text] [Related]
16. Molecular characterization of genes encoding trypsin-like enzymes from Aedes aegypti larvae and identification of digestive enzymes. Soares TS; Watanabe RM; Lemos FJ; Tanaka AS Gene; 2011 Dec; 489(2):70-5. PubMed ID: 21914468 [TBL] [Abstract][Full Text] [Related]
17. Development of specific RIA and ELISA to study trypsin modulating oostatic factor in mosquitoes. Borovsky D; Powell CA; Carlson DA Arch Insect Biochem Physiol; 1992; 21(1):13-21. PubMed ID: 1421442 [TBL] [Abstract][Full Text] [Related]
18. Laboratory evaluation of 18 repellent compounds as oviposition deterrents of Aedes albopictus and as larvicides of Aedes aegypti, Anopheles quadrimaculatus, and Culex quinquefasciatus. Xue RD; Barnard DR; Ali A J Am Mosq Control Assoc; 2003 Dec; 19(4):397-403. PubMed ID: 14710743 [TBL] [Abstract][Full Text] [Related]
19. Biosynthesis and control of mosquito gut proteases. Borovsky D IUBMB Life; 2003 Aug; 55(8):435-41. PubMed ID: 14609198 [TBL] [Abstract][Full Text] [Related]
20. Aedes aegypti TMOF modulates ecdysteroid production by prothoracic glands of the gypsy moth, Lymantria dispar. Gelman DB; Borovsky D Arch Insect Biochem Physiol; 2000 Oct; 45(2):60-8. PubMed ID: 11093243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]