These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 14981703)
1. Combination of cyclodextrins and polymeric surfactants for chiral separations. Valle BC; Billiot FH; Shamsi SA; Zhu X; Powe AM; Warner IM Electrophoresis; 2004 Feb; 25(4-5):743-52. PubMed ID: 14981703 [TBL] [Abstract][Full Text] [Related]
2. Polymeric alkenoxy amino acid surfactants: III. Chiral separations of binaphthyl derivatives. Rizvi SA; Simons DN; Shamsi SA Electrophoresis; 2004 Feb; 25(4-5):712-22. PubMed ID: 14981700 [TBL] [Abstract][Full Text] [Related]
3. Chiral separation of polychlorinated biphenyls using a combination of hydroxypropyl-gamma-cyclodextrin and a polymeric chiral surfactant. Edwards SH; Shamsi SA Electrophoresis; 2002 May; 23(9):1320-7. PubMed ID: 12007133 [TBL] [Abstract][Full Text] [Related]
4. Polymeric alkenoxy amino acid surfactants: II. Chiral separations of beta-blockers with multiple stereogenic centers. Rizvi SA; Akbay C; Shamsi SA Electrophoresis; 2004 Mar; 25(6):853-60. PubMed ID: 15004846 [TBL] [Abstract][Full Text] [Related]
5. Chiral separations using a polypeptide and polymeric dipeptide surfactant polyelectrolyte multilayer coating in open-tubular capillary electrochromatography. Kamande MW; Zhu X; Kapnissi-Christodoulou C; Warner IM Anal Chem; 2004 Nov; 76(22):6681-92. PubMed ID: 15538792 [TBL] [Abstract][Full Text] [Related]
6. Chiral recognition of binaphthyl derivatives using electrokinetic chromatography and steady-state fluorescence anisotropy: effect of temperature. Billiot FH; McCarroll MC; Billiot EJ; Warner IM Electrophoresis; 2004 Feb; 25(4-5):753-7. PubMed ID: 14981704 [TBL] [Abstract][Full Text] [Related]
7. Use of poly(sodium oleyl-L-leucylvalinate) surfactant for the separation of chiral compounds in micellar electrokinetic chromatography. Mwongela S; Akbay C; Zhu X; Collins S; Warner IM Electrophoresis; 2003 Sep; 24(17):2940-7. PubMed ID: 12973797 [TBL] [Abstract][Full Text] [Related]
8. Dodecyl thioglycopyranoside sulfates: novel sugar-based surfactants for enantiomeric separations by micellar electrokinetic capillary chromatography. Tano C; Son SH; Furukawa J; Furuike T; Sakairi N Electrophoresis; 2008 Jul; 29(13):2869-75. PubMed ID: 18546163 [TBL] [Abstract][Full Text] [Related]
9. Influence of the polydispersity of polymeric surfactants on the enantioselectivity of chiral compounds in micellar electrokinetic chromatography. Tarus J; Agbaria RA; Morris K; Mwongela S; Numan A; Simuli L; Fletcher KA; Warner IM Langmuir; 2004 Aug; 20(16):6887-95. PubMed ID: 15274600 [TBL] [Abstract][Full Text] [Related]
10. Chiral separation with dipeptide-terminated polymeric surfactants: the effect of an extra heteroatom on the polar head group. Haynes JL; Billiot EJ; Yarabe HH; Warner IM; Shamsi SA Electrophoresis; 2000 May; 21(8):1597-605. PubMed ID: 10832893 [TBL] [Abstract][Full Text] [Related]
11. Enantioseparation of chiral N-imidazole derivatives by electrokinetic chromatography using highly sulfated cyclodextrins: mechanism of enantioselective recognition. Danel C; Lipka E; Bonte JP; Goossens JF; Vaccher C; Foulon C Electrophoresis; 2005 Oct; 26(20):3824-32. PubMed ID: 16217831 [TBL] [Abstract][Full Text] [Related]
12. Chiral separation of amino acid esters by micellar electrokinetic chromatography. Salami M; Otto HH; Jira T Electrophoresis; 2001 Sep; 22(15):3291-6. PubMed ID: 11589293 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous enantioseparation of cyproconazole, bromuconazole, and diniconazole enantiomers by CD-modified MEKC. Wan Ibrahim WA; Warno SA; Aboul-Enein HY; Hermawan D; Sanagi MM Electrophoresis; 2009 Jun; 30(11):1976-82. PubMed ID: 19517438 [TBL] [Abstract][Full Text] [Related]
14. Polymeric alkenoxy amino acid surfactants: V. Comparison of carboxylate and sulfate head group polymeric surfactants for enantioseparation in MEKC. Rizvi SA; Shamsi SA Electrophoresis; 2007 Jun; 28(11):1762-78. PubMed ID: 17480038 [TBL] [Abstract][Full Text] [Related]
15. Enantioselectivity of alcohol-modified polymeric surfactants in micellar electrokinetic chromatography. Tarus J; Agbaria RA; Morris K; Billiot FH; Williams AA; Chatman T; Warner IM Electrophoresis; 2003 Aug; 24(15):2499-507. PubMed ID: 12900861 [TBL] [Abstract][Full Text] [Related]
16. Chiral separation of anionic and neutral compounds using a hepta-substituted cationic beta-cyclodextrin as a chiral selector in capillary electrophoresis. Lee D; Shamsi SA Electrophoresis; 2002 May; 23(9):1314-9. PubMed ID: 12007132 [TBL] [Abstract][Full Text] [Related]
17. Delta-cyclodextrin as novel chiral probe for enantiomeric separation by electromigration methods. Wistuba D; Bogdanski A; Larsen KL; Schurig V Electrophoresis; 2006 Nov; 27(21):4359-63. PubMed ID: 17022018 [TBL] [Abstract][Full Text] [Related]
18. Enantiomeric separation of amino acids derivatized with fluoresceine isothiocyanate isomer I by micellar electrokinetic chromatography using beta- and gamma-cyclodextrins as chiral selectors. Jin LJ; Rodriguez I; Li SF Electrophoresis; 1999 Jun; 20(7):1538-45. PubMed ID: 10424478 [TBL] [Abstract][Full Text] [Related]
19. Separation of multicomponent mixtures of 2,4-dinitrophenyl labelled amino acids and their enantiomers by capillary zone electrophoresis. Mikus P; Kaniansky D; Fanali S Electrophoresis; 2001 Feb; 22(3):470-7. PubMed ID: 11258757 [TBL] [Abstract][Full Text] [Related]
20. Enantiomeric separation of a group of chiral dihydropyridines by electrokinetic chromatography. GarcĂa-Ruiz C; Marina ML Electrophoresis; 2000 May; 21(8):1565-73. PubMed ID: 10832889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]