BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 14981743)

  • 1. Effect of muscle creatine content manipulation on contractile properties in mouse muscles.
    Eijnde BO; Lebacq J; Ramaekers M; Hespel P
    Muscle Nerve; 2004 Mar; 29(3):428-35. PubMed ID: 14981743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of dietary creatine supplements on the contractile properties of rat soleus and extensor digitorum longus muscles.
    McGuire M; Bradford A; MacDermott M
    Exp Physiol; 2001 Mar; 86(2):185-90. PubMed ID: 11429633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle properties in a transgenic mouse model for amyotrophic lateral sclerosis: effects of creatine treatment.
    Derave W; Van Den Bosch L; Lemmens G; Eijnde BO; Robberecht W; Hespel P
    Neurobiol Dis; 2003 Aug; 13(3):264-72. PubMed ID: 12901841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contractile properties of rat skeletal muscles after hindlimb unloading and beta-GPA administration.
    Nasledov GA; Arutyunyan RS; Nemirovskaya TL; Shenkman BS; Kozlovskaya IB
    J Gravit Physiol; 1996 Sep; 3(2):11-2. PubMed ID: 11540263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes of contractile properties of extensor digitorum longus in response to creatine-analogue administration and/or hindlimb suspension in rats.
    Wakatsuki T; Ohira Y; Nakamura K; Asakura T; Ohno H; Yamamoto M
    Jpn J Physiol; 1995; 45(6):979-89. PubMed ID: 8676581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of creatine manipulation on fast-twitch skeletal muscle of the mouse.
    Robinson DM; Loiselle DS
    Clin Exp Pharmacol Physiol; 2002 Dec; 29(12):1105-11. PubMed ID: 12390299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of changes in dietary fatty acids on isolated skeletal muscle functions in rats.
    Ayre KJ; Hulbert AJ
    J Appl Physiol (1985); 1996 Feb; 80(2):464-71. PubMed ID: 8929585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contractile economy and aerobic recovery metabolism in skeletal muscle adapted to creatine depletion.
    Moerland TS; Kushmerick MJ
    Am J Physiol; 1994 Jul; 267(1 Pt 1):C127-37. PubMed ID: 8048475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incubating isolated mouse EDL muscles with creatine improves force production and twitch kinetics in fatigue due to reduction in ionic strength.
    Head SI; Greenaway B; Chan S
    PLoS One; 2011; 6(8):e22742. PubMed ID: 21850234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of long-term creatine feeding and running on isometric functional measures and myosin heavy chain content of rat skeletal muscles.
    Gallo M; Gordon T; Syrotuik D; Shu Y; Tyreman N; MacLean I; Kenwell Z; Putman CT
    Pflugers Arch; 2006 Sep; 452(6):744-55. PubMed ID: 16688465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes of surface and t-tubular membrane excitability during fatigue with repeated tetani in isolated mouse fast- and slow-twitch muscle.
    Cairns SP; Taberner AJ; Loiselle DS
    J Appl Physiol (1985); 2009 Jan; 106(1):101-12. PubMed ID: 18948444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-carnitine pretreatment protects slow-twitch skeletal muscles in a rat model of ischemia-reperfusion injury.
    Demirel M; Kaya B; Cerkez C; Ertunc M; Sara Y
    Vasc Endovascular Surg; 2013 Oct; 47(7):540-5. PubMed ID: 23873671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contractile properties, fatigue and recovery are not influenced by short-term creatine supplementation in human muscle.
    Jakobi JM; Rice CL; Curtin SV; Marsh GD
    Exp Physiol; 2000 Jul; 85(4):451-60. PubMed ID: 10918084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle creatine uptake and creatine transporter expression in response to creatine supplementation and depletion.
    Brault JJ; Abraham KA; Terjung RL
    J Appl Physiol (1985); 2003 Jun; 94(6):2173-80. PubMed ID: 12611762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle-specific differences in the response of mitochondrial proteins to beta-GPA feeding: an evaluation of potential mechanisms.
    Williams DB; Sutherland LN; Bomhof MR; Basaraba SA; Thrush AB; Dyck DJ; Field CJ; Wright DC
    Am J Physiol Endocrinol Metab; 2009 Jun; 296(6):E1400-8. PubMed ID: 19318515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.
    Trinh HH; Lamb GD
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):591-600. PubMed ID: 16789925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of creatine on contractile force and sensitivity in mechanically skinned single fibers from rat skeletal muscle.
    Murphy RM; Stephenson DG; Lamb GD
    Am J Physiol Cell Physiol; 2004 Dec; 287(6):C1589-95. PubMed ID: 15282195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined creatine and protein supplementation in conjunction with resistance training promotes muscle GLUT-4 content and glucose tolerance in humans.
    Derave W; Eijnde BO; Verbessem P; Ramaekers M; Van Leemputte M; Richter EA; Hespel P
    J Appl Physiol (1985); 2003 May; 94(5):1910-6. PubMed ID: 12524381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional properties of skeletal muscle from transgenic animals with upregulated heat shock protein 70.
    Nosek TM; Brotto MA; Essig DA; Mestril R; Conover RC; Dillmann WH; Kolbeck RC
    Physiol Genomics; 2000 Nov; 4(1):25-33. PubMed ID: 11074010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of creatine loading and depletion on rat skeletal muscle contraction.
    Gagnon M; Maguire M; MacDermott M; Bradford A
    Clin Exp Pharmacol Physiol; 2002 Oct; 29(10):885-90. PubMed ID: 12207567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.