These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 14981743)
1. Effect of muscle creatine content manipulation on contractile properties in mouse muscles. Eijnde BO; Lebacq J; Ramaekers M; Hespel P Muscle Nerve; 2004 Mar; 29(3):428-35. PubMed ID: 14981743 [TBL] [Abstract][Full Text] [Related]
2. The effects of dietary creatine supplements on the contractile properties of rat soleus and extensor digitorum longus muscles. McGuire M; Bradford A; MacDermott M Exp Physiol; 2001 Mar; 86(2):185-90. PubMed ID: 11429633 [TBL] [Abstract][Full Text] [Related]
3. Skeletal muscle properties in a transgenic mouse model for amyotrophic lateral sclerosis: effects of creatine treatment. Derave W; Van Den Bosch L; Lemmens G; Eijnde BO; Robberecht W; Hespel P Neurobiol Dis; 2003 Aug; 13(3):264-72. PubMed ID: 12901841 [TBL] [Abstract][Full Text] [Related]
4. Contractile properties of rat skeletal muscles after hindlimb unloading and beta-GPA administration. Nasledov GA; Arutyunyan RS; Nemirovskaya TL; Shenkman BS; Kozlovskaya IB J Gravit Physiol; 1996 Sep; 3(2):11-2. PubMed ID: 11540263 [TBL] [Abstract][Full Text] [Related]
5. Changes of contractile properties of extensor digitorum longus in response to creatine-analogue administration and/or hindlimb suspension in rats. Wakatsuki T; Ohira Y; Nakamura K; Asakura T; Ohno H; Yamamoto M Jpn J Physiol; 1995; 45(6):979-89. PubMed ID: 8676581 [TBL] [Abstract][Full Text] [Related]
6. Effect of creatine manipulation on fast-twitch skeletal muscle of the mouse. Robinson DM; Loiselle DS Clin Exp Pharmacol Physiol; 2002 Dec; 29(12):1105-11. PubMed ID: 12390299 [TBL] [Abstract][Full Text] [Related]
7. Effects of changes in dietary fatty acids on isolated skeletal muscle functions in rats. Ayre KJ; Hulbert AJ J Appl Physiol (1985); 1996 Feb; 80(2):464-71. PubMed ID: 8929585 [TBL] [Abstract][Full Text] [Related]
8. Contractile economy and aerobic recovery metabolism in skeletal muscle adapted to creatine depletion. Moerland TS; Kushmerick MJ Am J Physiol; 1994 Jul; 267(1 Pt 1):C127-37. PubMed ID: 8048475 [TBL] [Abstract][Full Text] [Related]
9. Incubating isolated mouse EDL muscles with creatine improves force production and twitch kinetics in fatigue due to reduction in ionic strength. Head SI; Greenaway B; Chan S PLoS One; 2011; 6(8):e22742. PubMed ID: 21850234 [TBL] [Abstract][Full Text] [Related]
10. Effects of long-term creatine feeding and running on isometric functional measures and myosin heavy chain content of rat skeletal muscles. Gallo M; Gordon T; Syrotuik D; Shu Y; Tyreman N; MacLean I; Kenwell Z; Putman CT Pflugers Arch; 2006 Sep; 452(6):744-55. PubMed ID: 16688465 [TBL] [Abstract][Full Text] [Related]
11. Changes of surface and t-tubular membrane excitability during fatigue with repeated tetani in isolated mouse fast- and slow-twitch muscle. Cairns SP; Taberner AJ; Loiselle DS J Appl Physiol (1985); 2009 Jan; 106(1):101-12. PubMed ID: 18948444 [TBL] [Abstract][Full Text] [Related]
12. L-carnitine pretreatment protects slow-twitch skeletal muscles in a rat model of ischemia-reperfusion injury. Demirel M; Kaya B; Cerkez C; Ertunc M; Sara Y Vasc Endovascular Surg; 2013 Oct; 47(7):540-5. PubMed ID: 23873671 [TBL] [Abstract][Full Text] [Related]
13. Contractile properties, fatigue and recovery are not influenced by short-term creatine supplementation in human muscle. Jakobi JM; Rice CL; Curtin SV; Marsh GD Exp Physiol; 2000 Jul; 85(4):451-60. PubMed ID: 10918084 [TBL] [Abstract][Full Text] [Related]
14. Muscle creatine uptake and creatine transporter expression in response to creatine supplementation and depletion. Brault JJ; Abraham KA; Terjung RL J Appl Physiol (1985); 2003 Jun; 94(6):2173-80. PubMed ID: 12611762 [TBL] [Abstract][Full Text] [Related]
15. Muscle-specific differences in the response of mitochondrial proteins to beta-GPA feeding: an evaluation of potential mechanisms. Williams DB; Sutherland LN; Bomhof MR; Basaraba SA; Thrush AB; Dyck DJ; Field CJ; Wright DC Am J Physiol Endocrinol Metab; 2009 Jun; 296(6):E1400-8. PubMed ID: 19318515 [TBL] [Abstract][Full Text] [Related]
16. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres. Trinh HH; Lamb GD Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):591-600. PubMed ID: 16789925 [TBL] [Abstract][Full Text] [Related]
17. Effect of creatine on contractile force and sensitivity in mechanically skinned single fibers from rat skeletal muscle. Murphy RM; Stephenson DG; Lamb GD Am J Physiol Cell Physiol; 2004 Dec; 287(6):C1589-95. PubMed ID: 15282195 [TBL] [Abstract][Full Text] [Related]
18. Combined creatine and protein supplementation in conjunction with resistance training promotes muscle GLUT-4 content and glucose tolerance in humans. Derave W; Eijnde BO; Verbessem P; Ramaekers M; Van Leemputte M; Richter EA; Hespel P J Appl Physiol (1985); 2003 May; 94(5):1910-6. PubMed ID: 12524381 [TBL] [Abstract][Full Text] [Related]
19. Functional properties of skeletal muscle from transgenic animals with upregulated heat shock protein 70. Nosek TM; Brotto MA; Essig DA; Mestril R; Conover RC; Dillmann WH; Kolbeck RC Physiol Genomics; 2000 Nov; 4(1):25-33. PubMed ID: 11074010 [TBL] [Abstract][Full Text] [Related]
20. Effects of creatine loading and depletion on rat skeletal muscle contraction. Gagnon M; Maguire M; MacDermott M; Bradford A Clin Exp Pharmacol Physiol; 2002 Oct; 29(10):885-90. PubMed ID: 12207567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]