These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 14982169)

  • 1. MIC mitigation in a 100 MW district heating peak load unit.
    Olesen BH; Lorenzen J; Kjellerup BV; Odum S; Nielsen PH; Frølund B
    Water Sci Technol; 2004; 49(2):99-105. PubMed ID: 14982169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Microorganisms in heat supply lines and internal corrosion of steel pipes].
    Rozanova EP; Dubinina GA; Lebedeva EV; Suntsova LA; Lipovskikh VM; Tsvetkov NN
    Mikrobiologiia; 2003; 72(2):212-20. PubMed ID: 12751246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems.
    Delaunois F; Tosar F; Vitry V
    Bioelectrochemistry; 2014 Jun; 97():110-9. PubMed ID: 24503139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indicators for microbiologically induced corrosion of copper pipes in a cold-water plumbing system.
    Arens P; Tuschewitzki GJ; Wollmann M; Follner H; Jacobi H
    Zentralbl Hyg Umweltmed; 1995 Jan; 196(5):444-54. PubMed ID: 7727024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofouling and microbial corrosion problem in the thermo-fluid heat exchanger and cooling water system of a nuclear test reactor.
    Rao TS; Kora AJ; Chandramohan P; Panigrahi BS; Narasimhan SV
    Biofouling; 2009 Oct; 25(7):581-91. PubMed ID: 20183117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A field based study of ferrous metal corrosion in groundwater.
    McLaughlan RG; Stuetz RM
    Water Sci Technol; 2004; 49(2):41-7. PubMed ID: 14982162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?
    Serhan H; Slivka M; Albert T; Kwak SD
    Spine J; 2004; 4(4):379-87. PubMed ID: 15246296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Biofouling of heat exchange tubes].
    Montero F; Pintado JL
    Microbiologia; 1994; 10(1-2):93-102. PubMed ID: 7946131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.
    Mueller Y; Tognini R; Mayer J; Virtanen S
    J Biomed Mater Res A; 2007 Sep; 82(4):936-46. PubMed ID: 17335021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ detection of bacteria involved in cathodic depolarization and stainless steel surface corrosion using microautoradiography.
    Kjellerup BV; Olesen BH; Nielsen JL; Sowers KR; Nielsen PH
    J Appl Microbiol; 2008 Dec; 105(6):2231-8. PubMed ID: 19016973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study.
    Yuan SJ; Pehkonen SO
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):87-99. PubMed ID: 17582747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.
    Minnoş B; Ilhan-Sungur E; Çotuk A; Güngör ND; Cansever N
    Biofouling; 2013; 29(3):223-35. PubMed ID: 23439037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic and functional diversity of bacteria in biofilms from metal surfaces of an alkaline district heating system.
    Kjeldsen KU; Kjellerup BV; Egli K; Frølund B; Nielsen PH; Ingvorsen K
    FEMS Microbiol Ecol; 2007 Aug; 61(2):384-97. PubMed ID: 17651138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of metallic corrosion through microbiological route.
    Maruthamuthu S; Ponmariappan S; Mohanan S; Palaniswamy N; Palaniappan R; Rengaswamy NS
    Indian J Exp Biol; 2003 Sep; 41(9):1023-9. PubMed ID: 15242295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring and characterisation of bacteria in corroding district heating systems using fluorescence in situ hybridisation and microautoradiography.
    Kjellerup BV; Olesen BH; Nielsen JL; Frølund B; Odum S; Nielsen PH
    Water Sci Technol; 2003; 47(5):117-22. PubMed ID: 12701915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Measurement of low corrosion rate of coronary stents-made of 316L and 317L stainless steel].
    Liang C; Guo L; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):829-31. PubMed ID: 17002118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-soluble inhibitor on microbiologically influenced corrosion in diesel pipeline.
    Muthukumar N; Maruthamuthu S; Palaniswamy N
    Colloids Surf B Biointerfaces; 2006 Dec; 53(2):260-70. PubMed ID: 17110090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of sulphate-reducing bacteria on the performance of engineering materials.
    Javaherdashti R
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1507-17. PubMed ID: 21786108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial diversity in biofilms from corroding heating systems.
    Kjellerup BV; Thomsen TR; Nielsen JL; Olesen BH; Frølund B; Nielsen PH
    Biofouling; 2005; 21(1):19-29. PubMed ID: 16019388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of 'green' strategies to prevent or mitigate microbiologically influenced corrosion.
    Little B; Lee J; Ray R
    Biofouling; 2007; 23(1-2):87-97. PubMed ID: 17453733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.