These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 14982344)

  • 1. Elimination of the friction effects in unconfined compression tests of biomaterials and soft tissues.
    Wu JZ; Dong RG; Smutz WP
    Proc Inst Mech Eng H; 2004; 218(1):35-40. PubMed ID: 14982344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of effects of friction on the deformation behavior of soft tissues in unconfined compression tests.
    Wu JZ; Dong RG; Schopper AW
    J Biomech; 2004 Jan; 37(1):147-55. PubMed ID: 14672579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of friction coefficient in unconfined compression of brain tissue.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Oct; 14():163-71. PubMed ID: 23026694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous determination of the nonlinear-elastic properties of skin and subcutaneous tissue in unconfined compression tests.
    Wu JZ; Cutlip RG; Andrew ME; Dong RG
    Skin Res Technol; 2007 Feb; 13(1):34-42. PubMed ID: 17250530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The estimation method of friction in unconfined compression tests of liver tissue.
    Yang J; Yu L; Wang L; Wang W; Cui J
    Proc Inst Mech Eng H; 2018 Jun; 232(6):573-587. PubMed ID: 29749802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nonlinear material properties of liver tissue determined from no-slip uniaxial compression experiments.
    Roan E; Vemaganti K
    J Biomech Eng; 2007 Jun; 129(3):450-6. PubMed ID: 17536913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests.
    Wu JZ; Herzog W
    Ann Biomed Eng; 2000 Mar; 28(3):318-30. PubMed ID: 10784096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On a staggered iFEM approach to account for friction in compression testing of soft materials.
    Böl M; Kruse R; Ehret AE
    J Mech Behav Biomed Mater; 2013 Nov; 27():204-13. PubMed ID: 23689028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical analysis of the experimental artifact in trabecular bone compressive modulus.
    Keaveny TM; Borchers RE; Gibson LJ; Hayes WC
    J Biomech; 1993; 26(4-5):599-607. PubMed ID: 8478361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical characterization of brain tissue in compression at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Jun; 10():23-38. PubMed ID: 22520416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse finite element characterization of the human myometrium derived from uniaxial compression experiments.
    Weiss S; Niederer P; Nava A; Caduff R; Bajka M
    Biomed Tech (Berl); 2008 Apr; 53(2):52-8. PubMed ID: 18605921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Instrumentation and procedures for estimating the constitutive parameters of inhomogeneous elastic membranes.
    Nielsen PM; Malcolm DT; Hunter PJ; Charette PG
    Biomech Model Mechanobiol; 2002 Dec; 1(3):211-8. PubMed ID: 14586700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of friction on the unconfined compressive response of articular cartilage: a finite element analysis.
    Spilker RL; Suh JK; Mow VC
    J Biomech Eng; 1990 May; 112(2):138-46. PubMed ID: 2345443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-rate dependence of cartilage stiffness in unconfined compression: the role of fibril reinforcement versus tissue volume change in fluid pressurization.
    Li LP; Herzog W
    J Biomech; 2004 Mar; 37(3):375-82. PubMed ID: 14757457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear and viscoelastic characteristics of skin under compression: experiment and analysis.
    Wu JZ; Dong RG; Smutz WP; Schopper AW
    Biomed Mater Eng; 2003; 13(4):373-85. PubMed ID: 14646052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain measurement in biaxially loaded inhomogeneous, anisotropic elastic membranes.
    Malcolm DT; Nielsen PM; Hunter PJ; Charette PG
    Biomech Model Mechanobiol; 2002 Dec; 1(3):197-210. PubMed ID: 14586699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the material parameters of soft tissues in the compressed leg.
    Dubuis L; Avril S; Debayle J; Badel P
    Comput Methods Biomech Biomed Engin; 2012; 15(1):3-11. PubMed ID: 21809938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic finite element analysis of biological systems: comparison of a simple intervertebral disc model with experimental results.
    Espino DM; Meakin JR; Hukins DW; Reid JE
    Comput Methods Biomech Biomed Engin; 2003 Aug; 6(4):243-8. PubMed ID: 12959758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.