BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 14982398)

  • 1. Effects of data manipulation and statistical methods on species sensitivity distributions.
    Duboudin C; Ciffroy P; Magaud H
    Environ Toxicol Chem; 2004 Feb; 23(2):489-99. PubMed ID: 14982398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems.
    Maltby L; Blake N; Brock TC; van den Brink PJ
    Environ Toxicol Chem; 2005 Feb; 24(2):379-88. PubMed ID: 15719998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute-to-chronic species sensitivity distribution extrapolation.
    Duboudin C; Ciffroy P; Magaud H
    Environ Toxicol Chem; 2004 Jul; 23(7):1774-85. PubMed ID: 15230330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of species sensitivity distribution modeling approaches for environmental risk assessment of nanomaterials - A case study for silver and titanium dioxide representative materials.
    Sørensen SN; Wigger H; Zabeo A; Semenzin E; Hristozov D; Nowack B; Spurgeon DJ; Baun A
    Aquat Toxicol; 2020 Aug; 225():105543. PubMed ID: 32585540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic Consideration of Parameter Uncertainty and Variability in Probabilistic Species Sensitivity Distributions.
    Wigger H; Kawecki D; Nowack B; Adam V
    Integr Environ Assess Manag; 2020 Mar; 16(2):211-222. PubMed ID: 31535755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the precision of ecological risk: Conventional assessment factor method vs. species sensitivity distribution method.
    Sorgog K; Kamo M
    Ecotoxicol Environ Saf; 2019 Nov; 183():109494. PubMed ID: 31376805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aquatic risk assessment of a novel strobilurin fungicide: A microcosm study compared with the species sensitivity distribution approach.
    Chen L; Song Y; Tang B; Song X; Yang H; Li B; Zhao Y; Huang C; Han X; Wang S; Li Z
    Ecotoxicol Environ Saf; 2015 Oct; 120():418-27. PubMed ID: 26122735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species sensitivity weighted distribution for ecological risk assessment of engineered nanomaterials: the n-TiO2 case study.
    Semenzin E; Lanzellotto E; Hristozov D; Critto A; Zabeo A; Giubilato E; Marcomini A
    Environ Toxicol Chem; 2015 Nov; 34(11):2644-59. PubMed ID: 26058704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chronic toxicity of molybdate to marine organisms. I. Generating reliable effects data.
    Heijerick DG; Regoli L; Stubblefield W
    Sci Total Environ; 2012 Jul; 430():260-9. PubMed ID: 22663766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing Fifth Percentile Hazard Concentration Estimation Using Toxicity-Normalized Species Sensitivity Distributions.
    Dhond AK; Barron MG
    Environ Sci Technol; 2022 Dec; 56(23):17188-17196. PubMed ID: 36410104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of predicted no effect concentration (PNEC) for TCS to terrestrial species.
    Wang X; Zhang C; Liu Z; Wang W; Chen L
    Chemosphere; 2015 Nov; 139():428-33. PubMed ID: 26233766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interspecies correlation estimates predict protective environmental concentrations.
    Dyer SD; Versteeg DJ; Belanger SE; Chaney JG; Mayer FL
    Environ Sci Technol; 2006 May; 40(9):3102-11. PubMed ID: 16719118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Derivation of predicted no effect concentration (PNEC) for HHCB to terrestrial species (plants and invertebrates).
    Wang X; Liu Z; Wang W; Zhang C; Chen L
    Sci Total Environ; 2015 Mar; 508():122-7. PubMed ID: 25474169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fungicide risk assessment for aquatic ecosystems: importance of interspecific variation, toxic mode of action, and exposure regime.
    Maltby L; Brock TC; Van den Brink PJ
    Environ Sci Technol; 2009 Oct; 43(19):7556-63. PubMed ID: 19848176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relative sensitivity of freshwater species to antimony(III): Implications for water quality guidelines and ecological risk assessments.
    Obiakor MO; Tighe M; Wang Z; Ezeonyejiaku CD; Pereg L; Wilson SC
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):25276-25290. PubMed ID: 28929352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The power of size. 1. Rate constants and equilibrium ratios for accumulation of organic substances related to octanol-water partition ratio and species weight.
    Hendriks AJ; van der Linde A; Cornelissen G; Sijm DT
    Environ Toxicol Chem; 2001 Jul; 20(7):1399-420. PubMed ID: 11434281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extrapolating ecotoxicological measures from small data sets.
    Pennington DW
    Ecotoxicol Environ Saf; 2003 Oct; 56(2):238-50. PubMed ID: 12927555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species sensitivity distribution evaluation for chronic nickel toxicity to marine organisms.
    DeForest DK; Schlekat CE
    Integr Environ Assess Manag; 2013 Oct; 9(4):580-9. PubMed ID: 23553986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An updated weight of evidence approach to the aquatic hazard assessment of Bisphenol A and the derivation a new predicted no effect concentration (Pnec) using a non-parametric methodology.
    Wright-Walters M; Volz C; Talbott E; Davis D
    Sci Total Environ; 2011 Jan; 409(4):676-85. PubMed ID: 21130487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecological risk assessment of nonylphenol in coastal waters of China based on species sensitivity distribution model.
    Gao P; Li Z; Gibson M; Gao H
    Chemosphere; 2014 Jun; 104():113-9. PubMed ID: 24268347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.