These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Hydrogel-based reconfigurable components for microfluidic devices. Kim D; Beebe DJ Lab Chip; 2007 Feb; 7(2):193-8. PubMed ID: 17268621 [TBL] [Abstract][Full Text] [Related]
44. Towards molecular computing: co-development of microfluidic devices and chemical reaction media. King PH; Corsi JC; Pan BH; Morgan H; de Planque MR; Zauner KP Biosystems; 2012 Jul; 109(1):18-23. PubMed ID: 22306034 [TBL] [Abstract][Full Text] [Related]
45. Digital microfluidics using soft lithography. Urbanski JP; Thies W; Rhodes C; Amarasinghe S; Thorsen T Lab Chip; 2006 Jan; 6(1):96-104. PubMed ID: 16372075 [TBL] [Abstract][Full Text] [Related]
46. Embedded template-assisted fabrication of complex microchannels in PDMS and design of a microfluidic adhesive. Verma MK; Majumder A; Ghatak A Langmuir; 2006 Nov; 22(24):10291-5. PubMed ID: 17107035 [TBL] [Abstract][Full Text] [Related]
47. Microfluidic assembly blocks. Rhee M; Burns MA Lab Chip; 2008 Aug; 8(8):1365-73. PubMed ID: 18651080 [TBL] [Abstract][Full Text] [Related]
48. Membrane-activated microfluidic rotary devices for pumping and mixing. Tseng HY; Wang CH; Lin WY; Lee GB Biomed Microdevices; 2007 Aug; 9(4):545-54. PubMed ID: 17505888 [TBL] [Abstract][Full Text] [Related]
49. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Kim SM; Burns MA; Hasselbrink EF Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895 [TBL] [Abstract][Full Text] [Related]
50. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707 [TBL] [Abstract][Full Text] [Related]
51. A conformal nano-adhesive via initiated chemical vapor deposition for microfluidic devices. Im SG; Bong KW; Lee CH; Doyle PS; Gleason KK Lab Chip; 2009 Feb; 9(3):411-6. PubMed ID: 19156290 [TBL] [Abstract][Full Text] [Related]
52. Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs. Yu L; Li CM; Liu Y; Gao J; Wang W; Gan Y Lab Chip; 2009 May; 9(9):1243-7. PubMed ID: 19370243 [TBL] [Abstract][Full Text] [Related]
53. Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. Erickson D; Sinton D; Li D Lab Chip; 2003 Aug; 3(3):141-9. PubMed ID: 15100765 [TBL] [Abstract][Full Text] [Related]
54. Fabrication of porous polymer monoliths in polymeric microfluidic chips as an electrospray emitter for direct coupling to mass spectrometry. Bedair MF; Oleschuk RD Anal Chem; 2006 Feb; 78(4):1130-8. PubMed ID: 16478104 [TBL] [Abstract][Full Text] [Related]
55. Microscale features and surface chemical functionality patterned by electron beam lithography: a novel route to poly(dimethylsiloxane) (PDMS) stamp fabrication. Russell MT; Pingree LS; Hersam MC; Marks TJ Langmuir; 2006 Jul; 22(15):6712-8. PubMed ID: 16831018 [TBL] [Abstract][Full Text] [Related]
56. Technique for microfabrication of polymeric-based microchips from an SU-8 master with temperature-assisted vaporized organic solvent bonding. Koesdjojo MT; Koch CR; Remcho VT Anal Chem; 2009 Feb; 81(4):1652-9. PubMed ID: 19166284 [TBL] [Abstract][Full Text] [Related]
57. A doubly cross-linked nano-adhesive for the reliable sealing of flexible microfluidic devices. You JB; Min KI; Lee B; Kim DP; Im SG Lab Chip; 2013 Apr; 13(7):1266-72. PubMed ID: 23381132 [TBL] [Abstract][Full Text] [Related]
58. Microfluidic devices for energy conversion: planar integration and performance of a passive, fully immersed H2-O2 fuel cell. Mitrovski SM; Elliott LC; Nuzzo RG Langmuir; 2004 Aug; 20(17):6974-6. PubMed ID: 15301473 [TBL] [Abstract][Full Text] [Related]
59. A facile "liquid-molding" method to fabricate PDMS microdevices with 3-dimensional channel topography. Liu X; Wang Q; Qin J; Lin B Lab Chip; 2009 May; 9(9):1200-5. PubMed ID: 19370237 [TBL] [Abstract][Full Text] [Related]
60. Optically transparent, amphiphilic networks based on blends of perfluoropolyethers and poly(ethylene glycol). Hu Z; Chen L; Betts DE; Pandya A; Hillmyer MA; DeSimone JM J Am Chem Soc; 2008 Oct; 130(43):14244-52. PubMed ID: 18834196 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]