These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 14982433)

  • 61. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Desktop-Stereolithography 3D-Printing of a Poly(dimethylsiloxane)-Based Material with Sylgard-184 Properties.
    Bhattacharjee N; Parra-Cabrera C; Kim YT; Kuo AP; Folch A
    Adv Mater; 2018 May; 30(22):e1800001. PubMed ID: 29656459
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Lipid nanotubule fabrication by microfluidic tweezing.
    West J; Manz A; Dittrich PS
    Langmuir; 2008 Jun; 24(13):6754-8. PubMed ID: 18503287
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Electroosmotic flow in a poly(dimethylsiloxane) channel does not depend on percent curing agent.
    Wheeler AR; Trapp G; Trapp O; Zare RN
    Electrophoresis; 2004 Apr; 25(7-8):1120-4. PubMed ID: 15095455
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A microfluidic-based method for the transfer of biopolymer particles from an oil phase to an aqueous phase.
    Wong EH; Rondeau E; Schuetz P; Cooper-White J
    Lab Chip; 2009 Sep; 9(17):2582-90. PubMed ID: 19680582
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Solvent resistant microfluidic DNA synthesizer.
    Huang Y; Castrataro P; Lee CC; Quake SR
    Lab Chip; 2007 Jan; 7(1):24-6. PubMed ID: 17180201
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Organic solvent nanofiltration for microfluidic purification of poly(amidoamine) dendrimers.
    Rundel JT; Paul BK; Remcho VT
    J Chromatogr A; 2007 Aug; 1162(2):167-74. PubMed ID: 17628578
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Electrical isolation and characteristics of permanent magnet-actuated valves for PDMS microfluidics.
    Chen CY; Chen CH; Tu TY; Lin CM; Wo AM
    Lab Chip; 2011 Feb; 11(4):733-7. PubMed ID: 21132206
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Microfluidic platform for the generation of organic-phase microreactors.
    Cygan ZT; Cabral JT; Beers KL; Amis EJ
    Langmuir; 2005 Apr; 21(8):3629-34. PubMed ID: 15807612
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Chemical imaging of microfluidic flows using ATR-FTIR spectroscopy.
    Chan KL; Gulati S; Edel JB; de Mello AJ; Kazarian SG
    Lab Chip; 2009 Oct; 9(20):2909-13. PubMed ID: 19789743
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Design, fabrication and characterization of nano-filters in silicon microfluidic channels based on MEMS technology.
    Chen X; Cui D; Chen J
    Electrophoresis; 2009 Sep; 30(18):3168-73. PubMed ID: 19722199
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics.
    Tung YC; Torisawa YS; Futai N; Takayama S
    Lab Chip; 2007 Nov; 7(11):1497-503. PubMed ID: 17960277
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Patterning of cells on functionalized poly(dimethylsiloxane) surface prepared by hydrophobin and collagen modification.
    Hou S; Yang K; Qin M; Feng XZ; Guan L; Yang Y; Wang C
    Biosens Bioelectron; 2008 Dec; 24(4):918-22. PubMed ID: 18782664
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Surface modification of poly(dimethylsiloxane) for retarding swelling in organic solvents.
    Lee J; Kim MJ; Lee HH
    Langmuir; 2006 Feb; 22(5):2090-5. PubMed ID: 16489793
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Modification of poly(dimethylsiloxane) microfluidic channels with silica nanoparticles based on layer-by-layer assembly technique.
    Wang W; Zhao L; Zhang JR; Wang XM; Zhu JJ; Chen HY
    J Chromatogr A; 2006 Dec; 1136(1):111-7. PubMed ID: 17078959
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optofluidic control using photothermal nanoparticles.
    Liu GL; Kim J; Lu Y; Lee LP
    Nat Mater; 2006 Jan; 5(1):27-32. PubMed ID: 16362056
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A cell-laden microfluidic hydrogel.
    Ling Y; Rubin J; Deng Y; Huang C; Demirci U; Karp JM; Khademhosseini A
    Lab Chip; 2007 Jun; 7(6):756-62. PubMed ID: 17538718
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay.
    Skafte-Pedersen P; Sabourin D; Dufva M; Snakenborg D
    Lab Chip; 2009 Oct; 9(20):3003-6. PubMed ID: 19789757
    [TBL] [Abstract][Full Text] [Related]  

  • 79. In situ fabrication of macroporous polymer networks within microfluidic devices by living radical photopolymerization and leaching.
    Simms HM; Brotherton CM; Good BT; Davis RH; Anseth KS; Bowman CN
    Lab Chip; 2005 Feb; 5(2):151-7. PubMed ID: 15672128
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Controlled deposition of cells in sealed microfluidics using flow velocity boundaries.
    Lovchik RD; Bianco F; Matteoli M; Delamarche E
    Lab Chip; 2009 May; 9(10):1395-402. PubMed ID: 19417906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.