These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 14982630)

  • 1. The RhaS activator controls the Erwinia chrysanthemi 3937 genes rhiN, rhiT and rhiE involved in rhamnogalacturonan catabolism.
    Hugouvieux-Cotte-Pattat N
    Mol Microbiol; 2004 Mar; 51(5):1361-74. PubMed ID: 14982630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhamnogalacturonate lyase RhiE is secreted by the out system in Erwinia chrysanthemi.
    Laatu M; Condemine G
    J Bacteriol; 2003 Mar; 185(5):1642-9. PubMed ID: 12591882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PaeX, a second pectin acetylesterase of Erwinia chrysanthemi 3937.
    Shevchik VE; Hugouvieux-Cotte-Pattat N
    J Bacteriol; 2003 May; 185(10):3091-100. PubMed ID: 12730169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics of the KdgR regulon in Erwinia chrysanthemi 3937 and other gamma-proteobacteria.
    Rodionov DA; Gelfand MS; Hugouvieux-Cotte-Pattat N
    Microbiology (Reading); 2004 Nov; 150(Pt 11):3571-3590. PubMed ID: 15528647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PehN, a polygalacturonase homologue with a low hydrolase activity, is coregulated with the other Erwinia chrysanthemi polygalacturonases.
    Hugouvieux-Cotte-Pattat N; Shevchik VE; Nasser W
    J Bacteriol; 2002 May; 184(10):2664-73. PubMed ID: 11976295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a bacterial pectin acetyl esterase in Erwinia chrysanthemi 3937.
    Shevchik VE; Hugouvieux-Cotte-Pattat N
    Mol Microbiol; 1997 Jun; 24(6):1285-301. PubMed ID: 9218776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pectate lyase PelI of Erwinia chrysanthemi 3937 belongs to a new family.
    Shevchik VE; Robert-Baudouy J; Hugouvieux-Cotte-Pattat N
    J Bacteriol; 1997 Dec; 179(23):7321-30. PubMed ID: 9393696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity.
    Page F; Altabe S; Hugouvieux-Cotte-Pattat N; Lacroix JM; Robert-Baudouy J; Bohin JP
    J Bacteriol; 2001 May; 183(10):3134-41. PubMed ID: 11325942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937.
    Hugouvieux-Cotte-Pattat N; Blot N; Reverchon S
    Mol Microbiol; 2001 Sep; 41(5):1113-23. PubMed ID: 11555291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catabolism of raffinose, sucrose, and melibiose in Erwinia chrysanthemi 3937.
    Hugouvieux-Cotte-Pattat N; Charaoui-Boukerzaza S
    J Bacteriol; 2009 Nov; 191(22):6960-7. PubMed ID: 19734309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A regulatory cascade in the induction of rhaBAD.
    Egan SM; Schleif RF
    J Mol Biol; 1993 Nov; 234(1):87-98. PubMed ID: 8230210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pir gene of Erwinia chrysanthemi EC16 regulates hyperinduction of pectate lyase virulence genes in response to plant signals.
    Nomura K; Nasser W; Kawagishi H; Tsuyumu S
    Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14034-9. PubMed ID: 9826648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two transporters, TogT and TogMNAB, are responsible for oligogalacturonide uptake in Erwinia chrysanthemi 3937.
    Hugouvieux-Cotte-Pattat N; Reverchon S
    Mol Microbiol; 2001 Sep; 41(5):1125-32. PubMed ID: 11555292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The secretome of the plant pathogenic bacterium Erwinia chrysanthemi.
    Kazemi-Pour N; Condemine G; Hugouvieux-Cotte-Pattat N
    Proteomics; 2004 Oct; 4(10):3177-86. PubMed ID: 15378709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of kdgR, a gene of Erwinia chrysanthemi that regulates pectin degradation.
    Reverchon S; Nasser W; Robert-Baudouy J
    Mol Microbiol; 1991 Sep; 5(9):2203-16. PubMed ID: 1840643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the Erwinia chrysanthemi Gan locus, involved in galactan catabolism.
    Delangle A; Prouvost AF; Cogez V; Bohin JP; Lacroix JM; Cotte-Pattat NH
    J Bacteriol; 2007 Oct; 189(19):7053-61. PubMed ID: 17644603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential role of ferritins in iron metabolism and virulence of the plant-pathogenic bacterium Erwinia chrysanthemi 3937.
    Boughammoura A; Matzanke BF; Böttger L; Reverchon S; Lesuisse E; Expert D; Franza T
    J Bacteriol; 2008 Mar; 190(5):1518-30. PubMed ID: 18165304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The acyl-homoserine lactone-type quorum-sensing system modulates cell motility and virulence of Erwinia chrysanthemi pv. zeae.
    Hussain MB; Zhang HB; Xu JL; Liu Q; Jiang Z; Zhang LH
    J Bacteriol; 2008 Feb; 190(3):1045-53. PubMed ID: 18083823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing Erwinia chrysanthemi to adapt to hostile conditions.
    Rincon-Enriquez G; Crété P; Barras F; Py B
    Mol Microbiol; 2008 Mar; 67(6):1257-73. PubMed ID: 18284573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the PhoP-PhoQ system in the virulence of Erwinia chrysanthemi strain 3937: involvement in sensitivity to plant antimicrobial peptides, survival at acid Hh, and regulation of pectolytic enzymes.
    Llama-Palacios A; López-Solanilla E; Rodríguez-Palenzuela P
    J Bacteriol; 2005 Mar; 187(6):2157-62. PubMed ID: 15743964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.