BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 1498275)

  • 1. Experimental tests of three-dimensional model of urinary concentrating mechanism.
    Han JS; Thompson KA; Chou CL; Knepper MA
    J Am Soc Nephrol; 1992 Jun; 2(12):1677-88. PubMed ID: 1498275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney.
    Marcano M; Layton AT; Layton HE
    Bull Math Biol; 2010 Feb; 72(2):314-39. PubMed ID: 19915926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional lateral and vertical relationships of inner medullary loops of Henle and collecting ducts.
    Pannabecker TL; Dantzler WH
    Am J Physiol Renal Physiol; 2004 Oct; 287(4):F767-74. PubMed ID: 15187004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the rat kidney.
    Layton AT; Layton HE
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F1047-56. PubMed ID: 21753076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture.
    Layton AT
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F372-84. PubMed ID: 21068088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two modes for concentrating urine in rat inner medulla.
    Layton AT; Pannabecker TL; Dantzler WH; Layton HE
    Am J Physiol Renal Physiol; 2004 Oct; 287(4):F816-39. PubMed ID: 15213067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results.
    Layton AT
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F356-71. PubMed ID: 21068086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle.
    Dantzler WH; Layton AT; Layton HE; Pannabecker TL
    Clin J Am Soc Nephrol; 2014 Oct; 9(10):1781-9. PubMed ID: 23908457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional functional reconstruction of inner medullary thin limbs of Henle's loop.
    Pannabecker TL; Abbott DE; Dantzler WH
    Am J Physiol Renal Physiol; 2004 Jan; 286(1):F38-45. PubMed ID: 14519595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How is urine concentrated by the renal inner medulla?
    Knepper MA; Chou CL; Layton HE
    Contrib Nephrol; 1993; 102():144-60. PubMed ID: 8416179
    [No Abstract]   [Full Text] [Related]  

  • 11. In vitro perfusion of chinchilla thin limb segments: segmentation and osmotic water permeability.
    Chou CL; Knepper MA
    Am J Physiol; 1992 Sep; 263(3 Pt 2):F417-26. PubMed ID: 1415570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of peritubular hypertonicity on water and urea transport of inner medullary collecting duct.
    Kudo LH; César KR; Ping WC; Rocha AS
    Am J Physiol; 1992 Mar; 262(3 Pt 2):F338-47. PubMed ID: 1313642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal concentrating defect in protein malnutrition: the role of the thick ascending limb of Henle and inner medullary collecting duct.
    Kudo LH; Shimizu MH; Seguro AC; Rocha AS
    Nephron; 1991; 57(2):156-63. PubMed ID: 2020342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal medullary concentrating process: an integrative hypothesis.
    Bonventre JV; Lechene C
    Am J Physiol; 1980 Dec; 239(6):F578-88. PubMed ID: 7446733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments.
    Sands JM; Nonoguchi H; Knepper MA
    Am J Physiol; 1987 Nov; 253(5 Pt 2):F823-32. PubMed ID: 3688238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla.
    Pannabecker TL; Dantzler WH; Layton HE; Layton AT
    Am J Physiol Renal Physiol; 2008 Nov; 295(5):F1271-85. PubMed ID: 18495796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inner medullary external osmotic driving force in a 3-D model of the renal concentrating mechanism.
    Thomas SR; Wexler AS
    Am J Physiol; 1995 Aug; 269(2 Pt 2):F159-71. PubMed ID: 7653590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hormone effects on NaCl permeability of rat inner medullary collecting duct.
    Sands JM; Nonoguchi H; Knepper MA
    Am J Physiol; 1988 Sep; 255(3 Pt 2):F421-8. PubMed ID: 2970797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of collecting duct water permeability independent of cAMP-mediated AVP response.
    Lankford SP; Chou CL; Terada Y; Wall SM; Wade JB; Knepper MA
    Am J Physiol; 1991 Sep; 261(3 Pt 2):F554-66. PubMed ID: 1653534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urine concentrating mechanism in the inner medulla of the mammalian kidney: role of three-dimensional architecture.
    Dantzler WH; Pannabecker TL; Layton AT; Layton HE
    Acta Physiol (Oxf); 2011 Jul; 202(3):361-78. PubMed ID: 21054810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.