BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 14982924)

  • 21. A nuclear 3'-5' exonuclease proofreads for the exonuclease-deficient DNA polymerase alpha.
    Brown KR; Weatherdon KL; Galligan CL; Skalski V
    DNA Repair (Amst); 2002 Oct; 1(10):795-810. PubMed ID: 12531027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-.
    Lowe LG; Guengerich FP
    Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of accessory proteins on T4 DNA polymerase replication fidelity.
    Kroutil LC; Frey MW; Kaboord BF; Kunkel TA; Benkovic SJ
    J Mol Biol; 1998 Apr; 278(1):135-46. PubMed ID: 9571039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA polymerase mutagenic bypass and proofreading of endogenous DNA lesions.
    Eckert KA; Opresko PL
    Mutat Res; 1999 Mar; 424(1-2):221-36. PubMed ID: 10064863
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Herpes simplex virus processivity factor UL42 imparts increased DNA-binding specificity to the viral DNA polymerase and decreased dissociation from primer-template without reducing the elongation rate.
    Weisshart K; Chow CS; Coen DM
    J Virol; 1999 Jan; 73(1):55-66. PubMed ID: 9847307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HSV-1 DNA polymerase 3'-5' exonuclease-deficient mutant D368A exhibits severely reduced viral DNA synthesis and polymerase expression.
    Lawler JL; Coen DM
    J Gen Virol; 2018 Oct; 99(10):1432-1437. PubMed ID: 30176164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of DNA strand transfer between polymerase and proofreading exonuclease active sites regulates error correction during high-fidelity replication.
    Dangerfield TL; Johnson KA
    J Biol Chem; 2023 Jan; 299(1):102744. PubMed ID: 36436560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms by which herpes simplex virus DNA polymerase limits translesion synthesis through abasic sites.
    Zhu Y; Song L; Stroud J; Parris DS
    DNA Repair (Amst); 2008 Jan; 7(1):95-107. PubMed ID: 17904428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fidelity of DNA replication-a matter of proofreading.
    Bębenek A; Ziuzia-Graczyk I
    Curr Genet; 2018 Oct; 64(5):985-996. PubMed ID: 29500597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fidelity of eucaryotic DNA polymerase delta holoenzyme from Schizosaccharomyces pombe.
    Chen X; Zuo S; Kelman Z; O'Donnell M; Hurwitz J; Goodman MF
    J Biol Chem; 2000 Jun; 275(23):17677-82. PubMed ID: 10748208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch.
    Singh K; Modak MJ
    Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of DNA replication fidelity for three mutants of DNA polymerase I: Klenow fragment KF(exo+), KF(polA5), and KF(exo-).
    Eger BT; Kuchta RD; Carroll SS; Benkovic PA; Dahlberg ME; Joyce CM; Benkovic SJ
    Biochemistry; 1991 Feb; 30(5):1441-8. PubMed ID: 1991125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidation of thymine to 5-formyluracil in DNA promotes misincorporation of dGMP and subsequent elongation of a mismatched primer terminus by DNA polymerase.
    Masaoka A; Terato H; Kobayashi M; Ohyama Y; Ide H
    J Biol Chem; 2001 May; 276(19):16501-10. PubMed ID: 11278425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Processing of lagging-strand intermediates in vitro by herpes simplex virus type 1 DNA polymerase.
    Zhu Y; Wu Z; Cardoso MC; Parris DS
    J Virol; 2010 Aug; 84(15):7459-72. PubMed ID: 20444887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics.
    Furge LL; Guengerich FP
    Biochemistry; 1997 May; 36(21):6475-87. PubMed ID: 9174365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The pre-NH(2)-terminal domain of the herpes simplex virus 1 DNA polymerase catalytic subunit is required for efficient viral replication.
    Terrell SL; Coen DM
    J Virol; 2012 Oct; 86(20):11057-65. PubMed ID: 22875965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of crucial hydrogen-bonding residues for the interaction of herpes simplex virus DNA polymerase subunits via peptide display, mutational, and calorimetric approaches.
    Bridges KG; Chow CS; Coen DM
    J Virol; 2001 Jun; 75(11):4990-8. PubMed ID: 11333878
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional interaction between the herpes simplex-1 DNA polymerase and UL42 protein.
    Hernandez TR; Lehman IR
    J Biol Chem; 1990 Jul; 265(19):11227-32. PubMed ID: 2193033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Initiation of new DNA strands by the herpes simplex virus-1 primase-helicase complex and either herpes DNA polymerase or human DNA polymerase alpha.
    Cavanaugh NA; Kuchta RD
    J Biol Chem; 2009 Jan; 284(3):1523-32. PubMed ID: 19028696
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The extreme C terminus of herpes simplex virus DNA polymerase is crucial for functional interaction with processivity factor UL42 and for viral replication.
    Digard P; Bebrin WR; Weisshart K; Coen DM
    J Virol; 1993 Jan; 67(1):398-406. PubMed ID: 8380085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.