These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 14982939)

  • 41. Molecular Basis of Coupled Transport and Anion Conduction in Excitatory Amino Acid Transporters.
    Alleva C; Machtens JP; Kortzak D; Weyand I; Fahlke C
    Neurochem Res; 2022 Jan; 47(1):9-22. PubMed ID: 33587237
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aspartate-444 is essential for productive substrate interactions in a neuronal glutamate transporter.
    Teichman S; Kanner BI
    J Gen Physiol; 2007 Jun; 129(6):527-39. PubMed ID: 17535962
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of the glutamate transporters by JAK2.
    Hosseinzadeh Z; Bhavsar SK; Sopjani M; Alesutan I; Saxena A; DĂ«rmaku-Sopjani M; Lang F
    Cell Physiol Biochem; 2011; 28(4):693-702. PubMed ID: 22178881
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Up-Regulation of the Excitatory Amino Acid Transporters EAAT1 and EAAT2 by Mammalian Target of Rapamycin.
    Abousaab A; Uzcategui NL; Elsir B; Lang F
    Cell Physiol Biochem; 2016; 39(6):2492-2500. PubMed ID: 27855402
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Constitutive regulation of the glutamate/aspartate transporter EAAT1 by Calcium-Calmodulin-Dependent Protein Kinase II.
    Chawla AR; Johnson DE; Zybura AS; Leeds BP; Nelson RM; Hudmon A
    J Neurochem; 2017 Feb; 140(3):421-434. PubMed ID: 27889915
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular basis for differential inhibition of glutamate transporter subtypes by zinc ions.
    Vandenberg RJ; Mitrovic AD; Johnston GA
    Mol Pharmacol; 1998 Jul; 54(1):189-96. PubMed ID: 9658205
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A hydrophobic domain in glutamate transporters forms an extracellular helix associated with the permeation pathway for substrates.
    Leighton BH; Seal RP; Shimamoto K; Amara SG
    J Biol Chem; 2002 Aug; 277(33):29847-55. PubMed ID: 12015317
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glutamate transport by retinal Muller cells in glutamate/aspartate transporter-knockout mice.
    Sarthy VP; Pignataro L; Pannicke T; Weick M; Reichenbach A; Harada T; Tanaka K; Marc R
    Glia; 2005 Jan; 49(2):184-96. PubMed ID: 15390100
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of aromatic transmembrane residues of the organic anion transporter, rOAT3, in substrate recognition.
    Feng B; Shu Y; Giacomini KM
    Biochemistry; 2002 Jul; 41(28):8941-7. PubMed ID: 12102636
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mutating a conserved proline residue within the trimerization domain modifies Na+ binding to excitatory amino acid transporters and associated conformational changes.
    Hotzy J; Schneider N; Kovermann P; Fahlke C
    J Biol Chem; 2013 Dec; 288(51):36492-501. PubMed ID: 24214974
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ion fluxes associated with excitatory amino acid transport.
    Wadiche JI; Amara SG; Kavanaugh MP
    Neuron; 1995 Sep; 15(3):721-8. PubMed ID: 7546750
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Substrate turnover by transporters curtails synaptic glutamate transients.
    Mennerick S; Shen W; Xu W; Benz A; Tanaka K; Shimamoto K; Isenberg KE; Krause JE; Zorumski CF
    J Neurosci; 1999 Nov; 19(21):9242-51. PubMed ID: 10531428
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the tritium-labeled analog of L-threo-beta-benzyloxyaspartate binding to glutamate transporters.
    Shimamoto K; Otsubo Y; Shigeri Y; Yasuda-Kamatani Y; Satoh M; Kaneko S; Nakagawa T
    Mol Pharmacol; 2007 Jan; 71(1):294-302. PubMed ID: 17047096
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Water transport by the human Na+-coupled glutamate cotransporter expressed in Xenopus oocytes.
    MacAulay N; Gether U; Klaerke DA; Zeuthen T
    J Physiol; 2001 Feb; 530(Pt 3):367-78. PubMed ID: 11158269
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulation of Na(+),K(+) pumping and neurotransmitter uptake by beta-amyloid.
    Gu QB; Zhao JX; Fei J; Schwarz W
    Neuroscience; 2004; 126(1):61-7. PubMed ID: 15145073
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two serine residues of the glutamate transporter GLT-1 are crucial for coupling the fluxes of sodium and the neurotransmitter.
    Zhang Y; Kanner BI
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1710-5. PubMed ID: 9990089
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determinants of anion permeation in the second transmembrane domain of the mouse bestrophin-2 chloride channel.
    Qu Z; Hartzell C
    J Gen Physiol; 2004 Oct; 124(4):371-82. PubMed ID: 15452198
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Consensus designs and thermal stability determinants of a human glutamate transporter.
    Cirri E; Brier S; Assal R; Canul-Tec JC; Chamot-Rooke J; Reyes N
    Elife; 2018 Oct; 7():. PubMed ID: 30334738
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of cation binding in determining substrate selectivity of glutamate transporters.
    Huang S; Ryan RM; Vandenberg RJ
    J Biol Chem; 2009 Feb; 284(7):4510-5. PubMed ID: 19074430
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel.
    Wadiche JI; Kavanaugh MP
    J Neurosci; 1998 Oct; 18(19):7650-61. PubMed ID: 9742136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.