BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 14982958)

  • 1. The DNA-binding properties of the ARID-containing subunits of yeast and mammalian SWI/SNF complexes.
    Wilsker D; Patsialou A; Zumbrun SD; Kim S; Chen Y; Dallas PB; Moran E
    Nucleic Acids Res; 2004; 32(4):1345-53. PubMed ID: 14982958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two related ARID family proteins are alternative subunits of human SWI/SNF complexes.
    Wang X; Nagl NG; Wilsker D; Van Scoy M; Pacchione S; Yaciuk P; Dallas PB; Moran E
    Biochem J; 2004 Oct; 383(Pt 2):319-25. PubMed ID: 15170388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of human SWI1 ARID domain to DNA without sequence specificity: A molecular dynamics study.
    Sun Q; Zhu T; Wang CY; Ma D
    J Huazhong Univ Sci Technolog Med Sci; 2015 Aug; 35(4):469-476. PubMed ID: 26223912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human SWI-SNF complex protein p270 is an ARID family member with non-sequence-specific DNA binding activity.
    Dallas PB; Pacchione S; Wilsker D; Bowrin V; Kobayashi R; Moran E
    Mol Cell Biol; 2000 May; 20(9):3137-46. PubMed ID: 10757798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential targeting of two distinct SWI/SNF-related Drosophila chromatin-remodeling complexes.
    Mohrmann L; Langenberg K; Krijgsveld J; Kal AJ; Heck AJ; Verrijzer CP
    Mol Cell Biol; 2004 Apr; 24(8):3077-88. PubMed ID: 15060132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and DNA-binding sites of the SWI1 AT-rich interaction domain (ARID) suggest determinants for sequence-specific DNA recognition.
    Kim S; Zhang Z; Upchurch S; Isern N; Chen Y
    J Biol Chem; 2004 Apr; 279(16):16670-6. PubMed ID: 14722072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner.
    Nie Z; Yan Z; Chen EH; Sechi S; Ling C; Zhou S; Xue Y; Yang D; Murray D; Kanakubo E; Cleary ML; Wang W
    Mol Cell Biol; 2003 Apr; 23(8):2942-52. PubMed ID: 12665591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure of SWI1 AT-rich interaction domain from Saccharomyces cerevisiae and its nonspecific binding to DNA.
    Wang T; Zhang J; Zhang X; Tu X
    Proteins; 2012 Jul; 80(7):1911-7. PubMed ID: 22488857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex.
    Nie Z; Xue Y; Yang D; Zhou S; Deroo BJ; Archer TK; Wang W
    Mol Cell Biol; 2000 Dec; 20(23):8879-88. PubMed ID: 11073988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The human SWI/SNF-B chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes.
    Xue Y; Canman JC; Lee CS; Nie Z; Yang D; Moreno GT; Young MK; Salmon ED; Wang W
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13015-20. PubMed ID: 11078522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AtSWI3B, an Arabidopsis homolog of SWI3, a core subunit of yeast Swi/Snf chromatin remodeling complex, interacts with FCA, a regulator of flowering time.
    Sarnowski TJ; Swiezewski S; Pawlikowska K; Kaczanowski S; Jerzmanowski A
    Nucleic Acids Res; 2002 Aug; 30(15):3412-21. PubMed ID: 12140326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes.
    Raab JR; Resnick S; Magnuson T
    PLoS Genet; 2015 Dec; 11(12):e1005748. PubMed ID: 26716708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Architectural DNA binding by a high-mobility-group/kinesin-like subunit in mammalian SWI/SNF-related complexes.
    Wang W; Chi T; Xue Y; Zhou S; Kuo A; Crabtree GR
    Proc Natl Acad Sci U S A; 1998 Jan; 95(2):492-8. PubMed ID: 9435219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subunits of the yeast SWI/SNF complex are members of the actin-related protein (ARP) family.
    Peterson CL; Zhao Y; Chait BT
    J Biol Chem; 1998 Sep; 273(37):23641-4. PubMed ID: 9726966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and characterization of hELD/OSA1, a novel BRG1 interacting protein.
    Hurlstone AF; Olave IA; Barker N; van Noort M; Clevers H
    Biochem J; 2002 May; 364(Pt 1):255-64. PubMed ID: 11988099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-binding properties of ARID family proteins.
    Patsialou A; Wilsker D; Moran E
    Nucleic Acids Res; 2005; 33(1):66-80. PubMed ID: 15640446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The core histone N-terminal domains are required for multiple rounds of catalytic chromatin remodeling by the SWI/SNF and RSC complexes.
    Logie C; Tse C; Hansen JC; Peterson CL
    Biochemistry; 1999 Feb; 38(8):2514-22. PubMed ID: 10029546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-binding properties of the yeast SWI/SNF complex.
    Quinn J; Fyrberg AM; Ganster RW; Schmidt MC; Peterson CL
    Nature; 1996 Feb; 379(6568):844-7. PubMed ID: 8587611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SNF11, a new component of the yeast SNF-SWI complex that interacts with a conserved region of SNF2.
    Treich I; Cairns BR; de los Santos T; Brewster E; Carlson M
    Mol Cell Biol; 1995 Aug; 15(8):4240-8. PubMed ID: 7623818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in both the structured domain and N-terminus of histone H2B bypass the requirement for Swi-Snf in yeast.
    Recht J; Osley MA
    EMBO J; 1999 Jan; 18(1):229-40. PubMed ID: 9878065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.