BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 14983051)

  • 1. Tomosyn inhibits priming of large dense-core vesicles in a calcium-dependent manner.
    Yizhar O; Matti U; Melamed R; Hagalili Y; Bruns D; Rettig J; Ashery U
    Proc Natl Acad Sci U S A; 2004 Feb; 101(8):2578-83. PubMed ID: 14983051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of cysteine string protein (Csp) and mutant alpha-SNAP overexpression reveals a role for csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells.
    Graham ME; Burgoyne RD
    J Neurosci; 2000 Feb; 20(4):1281-9. PubMed ID: 10662817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amisyn regulates exocytosis and fusion pore stability by both syntaxin-dependent and syntaxin-independent mechanisms.
    Constable JR; Graham ME; Morgan A; Burgoyne RD
    J Biol Chem; 2005 Sep; 280(36):31615-23. PubMed ID: 16033762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca(2+)-dependent activator protein for secretion is critical for the fusion of dense-core vesicles with the membrane in calf adrenal chromaffin cells.
    Elhamdani A; Martin TF; Kowalchyk JA; Artalejo CR
    J Neurosci; 1999 Sep; 19(17):7375-83. PubMed ID: 10460244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of fusion pore dynamics during exocytosis by Munc18.
    Fisher RJ; Pevsner J; Burgoyne RD
    Science; 2001 Feb; 291(5505):875-8. PubMed ID: 11157167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous capacitance and amperometric measurements of exocytosis: a comparison.
    Oberhauser AF; Robinson IM; Fernandez JM
    Biophys J; 1996 Aug; 71(2):1131-9. PubMed ID: 8842250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple functional domains are involved in tomosyn regulation of exocytosis.
    Yizhar O; Lipstein N; Gladycheva SE; Matti U; Ernst SA; Rettig J; Stuenkel EL; Ashery U
    J Neurochem; 2007 Oct; 103(2):604-16. PubMed ID: 17666050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating vesicle priming reveals that vesicle immobilization is necessary but not sufficient for fusion-competence.
    Yizhar O; Ashery U
    PLoS One; 2008 Jul; 3(7):e2694. PubMed ID: 18628949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles.
    Sørensen JB
    Pflugers Arch; 2004 Jul; 448(4):347-62. PubMed ID: 14997396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examining synaptotagmin 1 function in dense core vesicle exocytosis under direct control of Ca2+.
    Sørensen JB; Fernández-Chacón R; Südhof TC; Neher E
    J Gen Physiol; 2003 Sep; 122(3):265-76. PubMed ID: 12939392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tomosyn-1 is involved in a post-docking event required for pancreatic beta-cell exocytosis.
    Cheviet S; Bezzi P; Ivarsson R; Renström E; Viertl D; Kasas S; Catsicas S; Regazzi R
    J Cell Sci; 2006 Jul; 119(Pt 14):2912-20. PubMed ID: 16787939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells.
    Ashery U; Varoqueaux F; Voets T; Betz A; Thakur P; Koch H; Neher E; Brose N; Rettig J
    EMBO J; 2000 Jul; 19(14):3586-96. PubMed ID: 10899113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complexin facilitates exocytosis and synchronizes vesicle release in two secretory model systems.
    Lin MY; Rohan JG; Cai H; Reim K; Ko CP; Chow RH
    J Physiol; 2013 May; 591(10):2463-73. PubMed ID: 23401610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vacuolar sequential exocytosis of large dense-core vesicles in adrenal medulla.
    Kishimoto T; Kimura R; Liu TT; Nemoto T; Takahashi N; Kasai H
    EMBO J; 2006 Feb; 25(4):673-82. PubMed ID: 16467850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid regulated dense-core vesicle exocytosis requires the CAPS protein.
    Rupnik M; Kreft M; Sikdar SK; Grilc S; Romih R; Zupancic G; Martin TF; Zorec R
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5627-32. PubMed ID: 10792045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of SNAREs by tomosyn and ROCK: implication in extension and retraction of neurites.
    Sakisaka T; Baba T; Tanaka S; Izumi G; Yasumi M; Takai Y
    J Cell Biol; 2004 Jul; 166(1):17-25. PubMed ID: 15240567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of Snapin in neurosecretion: snapin knock-out mice exhibit impaired calcium-dependent exocytosis of large dense-core vesicles in chromaffin cells.
    Tian JH; Wu ZX; Unzicker M; Lu L; Cai Q; Li C; Schirra C; Matti U; Stevens D; Deng C; Rettig J; Sheng ZH
    J Neurosci; 2005 Nov; 25(45):10546-55. PubMed ID: 16280592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity.
    Xu T; Binz T; Niemann H; Neher E
    Nat Neurosci; 1998 Jul; 1(3):192-200. PubMed ID: 10195143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptor-mediated regulation of tomosyn-syntaxin 1A interactions in bovine adrenal chromaffin cells.
    Gladycheva SE; Lam AD; Liu J; D'Andrea-Merrins M; Yizhar O; Lentz SI; Ashery U; Ernst SA; Stuenkel EL
    J Biol Chem; 2007 Aug; 282(31):22887-99. PubMed ID: 17545156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Munc18-1 regulates early and late stages of exocytosis via syntaxin-independent protein interactions.
    Ciufo LF; Barclay JW; Burgoyne RD; Morgan A
    Mol Biol Cell; 2005 Feb; 16(2):470-82. PubMed ID: 15563604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.