BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 14983067)

  • 21. A novel phosphatase family, structurally related to dual-specificity phosphatases, that displays unique amino acid sequence and substrate specificity.
    Romá-Mateo C; Ríos P; Tabernero L; Attwood TK; Pulido R
    J Mol Biol; 2007 Dec; 374(4):899-909. PubMed ID: 17976645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of JAK/STAT signalling components by genome-wide RNA interference.
    Müller P; Kuttenkeuler D; Gesellchen V; Zeidler MP; Boutros M
    Nature; 2005 Aug; 436(7052):871-5. PubMed ID: 16094372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell surface expression of channel catfish leukocyte immune-type receptors (IpLITRs) and recruitment of both Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 and SHP-2.
    Montgomery BC; Mewes J; Davidson C; Burshtyn DN; Stafford JL
    Dev Comp Immunol; 2009 Apr; 33(4):570-82. PubMed ID: 19013191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of inhibitory signaling motifs of the natural killer cell receptor Siglec-7: attenuated recruitment of phosphatases by the receptor is attributed to two amino acids in the motifs.
    Yamaji T; Mitsuki M; Teranishi T; Hashimoto Y
    Glycobiology; 2005 Jul; 15(7):667-76. PubMed ID: 15703304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energetics of peptide recognition by the second PDZ domain of human protein tyrosine phosphatase 1E.
    Milev S; Bjelić S; Georgiev O; Jelesarov I
    Biochemistry; 2007 Jan; 46(4):1064-78. PubMed ID: 17240990
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular mechanisms of the PRL phosphatases.
    Rios P; Li X; Köhn M
    FEBS J; 2013 Jan; 280(2):505-24. PubMed ID: 22413991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Function-dependent clustering of orthologues and paralogues of cyclophilins.
    Galat A
    Proteins; 2004 Sep; 56(4):808-20. PubMed ID: 15281132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracellular domain splice variants of a transforming protein tyrosine phosphatase alpha mutant differentially activate Src-kinase dependent focus formation.
    Kapp K; Siemens J; Weyrich P; Schulz JB; Häring HU; Lammers R
    Genes Cells; 2007 Jan; 12(1):63-73. PubMed ID: 17212655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diversity and evolution of the thyroglobulin type-1 domain superfamily.
    Novinec M; Kordis D; Turk V; Lenarcic B
    Mol Biol Evol; 2006 Apr; 23(4):744-55. PubMed ID: 16368776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transmembrane homodimerization of receptor-like protein tyrosine phosphatases.
    Chin CN; Sachs JN; Engelman DM
    FEBS Lett; 2005 Jul; 579(17):3855-8. PubMed ID: 15978577
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The N-terminal SH2 domain of the tyrosine phosphatase, SHP-2, is essential for Jak2-dependent signaling via the angiotensin II type AT1 receptor.
    Godeny MD; Sayyah J; VonDerLinden D; Johns M; Ostrov DA; Caldwell-Busby J; Sayeski PP
    Cell Signal; 2007 Mar; 19(3):600-9. PubMed ID: 17027227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphoprotein phosphatases 1: tyrosine phosphatases.
    Goldstein BJ
    Protein Profile; 1995; 2(13):1425-1585. PubMed ID: 8665327
    [No Abstract]   [Full Text] [Related]  

  • 33. Bioinformatic identification of genes encoding C1q-domain-containing proteins in zebrafish.
    Mei J; Gui J
    J Genet Genomics; 2008 Jan; 35(1):17-24. PubMed ID: 18222405
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational analysis of protein tyrosine phosphatases: practical guide to bioinformatics and data resources.
    Andersen JN; Del Vecchio RL; Kannan N; Gergel J; Neuwald AF; Tonks NK
    Methods; 2005 Jan; 35(1):90-114. PubMed ID: 15588990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CD148.
    Schraven B
    J Biol Regul Homeost Agents; 2000; 14(3):220-2. PubMed ID: 11037057
    [No Abstract]   [Full Text] [Related]  

  • 36. Genome-wide survey of tyrosine phosphatases in thirty mammalian genomes.
    Bhattacharyya T; Sowdhamini R
    Cell Signal; 2021 Aug; 84():110009. PubMed ID: 33848580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein tyrosine phosphatases: counting the trees in the forest.
    Hooft van Huijsduijnen R
    Gene; 1998 Dec; 225(1-2):1-8. PubMed ID: 9931406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual-specificity phosphatases as molecular targets for inhibition in human disease.
    Ríos P; Nunes-Xavier CE; Tabernero L; Köhn M; Pulido R
    Antioxid Redox Signal; 2014 May; 20(14):2251-73. PubMed ID: 24206177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-Wide Search for Tyrosine Phosphatases in the Human Genome Through Computational Approaches Leads to the Discovery of Few New Domain Architectures.
    Bhattacharyya T; Sowdhamini R
    Evol Bioinform Online; 2019; 15():1176934319840289. PubMed ID: 31007525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein-tyrosine phosphatases.
    Stone RL; Dixon JE
    J Biol Chem; 1994 Dec; 269(50):31323-6. PubMed ID: 7989293
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.