These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 14983074)

  • 21. EvDTree: structure-dependent substitution profiles based on decision tree classification of 3D environments.
    Gelly JC; Chiche L; Gracy J
    BMC Bioinformatics; 2005 Jan; 6():4. PubMed ID: 15638949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid detection of conserved regions in protein sequences using wavelets.
    Krishnan A; Li KB; Issac P
    In Silico Biol; 2004; 4(2):133-48. PubMed ID: 15107019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconfigurable systems for sequence alignment and for general dynamic programming.
    Jacobi RP; Ayala-Rincón M; Carvalho LG; Llanos CH; Hartenstein RW
    Genet Mol Res; 2005 Sep; 4(3):543-52. PubMed ID: 16342039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DPANN: improved sequence to structure alignments following fold recognition.
    Reinhardt A; Eisenberg D
    Proteins; 2004 Aug; 56(3):528-38. PubMed ID: 15229885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Routes are trees: the parsing perspective on protein folding.
    Hockenmaier J; Joshi AK; Dill KA
    Proteins; 2007 Jan; 66(1):1-15. PubMed ID: 17063473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NdPASA: a novel pairwise protein sequence alignment algorithm that incorporates neighbor-dependent amino acid propensities.
    Wang J; Feng JA
    Proteins; 2005 Feb; 58(3):628-37. PubMed ID: 15616964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MUSTANG: a multiple structural alignment algorithm.
    Konagurthu AS; Whisstock JC; Stuckey PJ; Lesk AM
    Proteins; 2006 Aug; 64(3):559-74. PubMed ID: 16736488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SPEM: improving multiple sequence alignment with sequence profiles and predicted secondary structures.
    Zhou H; Zhou Y
    Bioinformatics; 2005 Sep; 21(18):3615-21. PubMed ID: 16020471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the role of the topology in protein folding by computational inverse folding experiments.
    Mucherino A; Costantini S; di Serafino D; D'Apuzzo M; Facchiano A; Colonna G
    Comput Biol Chem; 2008 Aug; 32(4):233-9. PubMed ID: 18479970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of gapped positions in multiple sequence alignments on secondary structure prediction methods.
    Simossis VA; Heringa J
    Comput Biol Chem; 2004 Dec; 28(5-6):351-66. PubMed ID: 15556476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward more meaningful hierarchical classification of protein three-dimensional structures.
    May AC
    Proteins; 1999 Oct; 37(1):20-9. PubMed ID: 10451547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Classification tree based protein structure distances for testing sequence-structure correlation.
    Zintzaras E
    Comput Biol Med; 2008 Apr; 38(4):469-74. PubMed ID: 18313041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CLEMAPS: multiple alignment of protein structures based on conformational letters.
    Liu X; Zhao YP; Zheng WM
    Proteins; 2008 May; 71(2):728-36. PubMed ID: 17979193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Designing an A* algorithm for calculating edit distance between rooted-unordered trees.
    Horesh Y; Mehr R; Unger R
    J Comput Biol; 2006; 13(6):1165-76. PubMed ID: 16901235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved algorithms for approximate string matching (extended abstract).
    Papamichail D; Papamichail G
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S10. PubMed ID: 19208109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PROuST: a comparison method of three-dimensional structures of proteins using indexing techniques.
    Comin M; Guerra C; Zanotti G
    J Comput Biol; 2004; 11(6):1061-72. PubMed ID: 15662198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fold classification based on secondary structure--how much is gained by including loop topology?
    Jeong J; Berman P; Przytycka T
    BMC Struct Biol; 2006 Mar; 6():3. PubMed ID: 16524467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of Pseudoknotted RNA Secondary Structures by Topological Centroid Identification and Tree Edit Distance.
    Wang F; Akutsu T; Mori T
    J Comput Biol; 2020 Sep; 27(9):1443-1451. PubMed ID: 32058802
    [No Abstract]   [Full Text] [Related]  

  • 39. Linear space string correction algorithm using the Damerau-Levenshtein distance.
    Zhao C; Sahni S
    BMC Bioinformatics; 2020 Dec; 21(Suppl 1):4. PubMed ID: 33297940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. String correction using the Damerau-Levenshtein distance.
    Zhao C; Sahni S
    BMC Bioinformatics; 2019 Jun; 20(Suppl 11):277. PubMed ID: 31167641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.