These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 14983077)

  • 1. Probabilistic approach to the design of symmetric protein quaternary structures.
    Fu X; Kono H; Saven JG
    Protein Eng; 2003 Dec; 16(12):971-7. PubMed ID: 14983077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combinatorial design of protein sequences with applications to lattice and real proteins.
    Bhattacherjee A; Biswas P
    J Chem Phys; 2009 Sep; 131(12):125101. PubMed ID: 19791919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical theory of protein sequence design by random mutation.
    Bhattacherjee A; Biswas P
    J Phys Chem B; 2009 Apr; 113(16):5520-7. PubMed ID: 19323540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probabilistic description of protein alignments for sequences and structures.
    Koike R; Kinoshita K; Kidera A
    Proteins; 2004 Jul; 56(1):157-66. PubMed ID: 15162495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical theory of combinatorial libraries of folding proteins: energetic discrimination of a target structure.
    Zou J; Saven JG
    J Mol Biol; 2000 Feb; 296(1):281-94. PubMed ID: 10656832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein design with L- and D-alpha-amino acid structures as the alphabet.
    Durani S
    Acc Chem Res; 2008 Oct; 41(10):1301-8. PubMed ID: 18642934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure determination of symmetric homo-oligomers by a complete search of symmetry configuration space, using NMR restraints and van der Waals packing.
    Potluri S; Yan AK; Chou JJ; Donald BR; Bailey-Kellogg C
    Proteins; 2006 Oct; 65(1):203-19. PubMed ID: 16897780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Chou's pseudo amino acid composition to predict protein quaternary structure: a sequence-segmented PseAAC approach.
    Zhang SW; Chen W; Yang F; Pan Q
    Amino Acids; 2008 Oct; 35(3):591-8. PubMed ID: 18427713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-like proteins from an unselected library of designed amino acid sequences.
    Wei Y; Hecht MH
    Protein Eng Des Sel; 2004 Jan; 17(1):67-75. PubMed ID: 14985539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic computational alanine scanning: application to p53 oligomerization.
    Chong LT; Swope WC; Pitera JW; Pande VS
    J Mol Biol; 2006 Mar; 357(3):1039-49. PubMed ID: 16457841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein structure estimation from minimal restraints using Rosetta.
    Rohl CA
    Methods Enzymol; 2005; 394():244-60. PubMed ID: 15808223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimised amino acid specific weighting factors for unbound protein docking.
    Heuser P; Schomburg D
    BMC Bioinformatics; 2006 Jul; 7():344. PubMed ID: 16842615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-protein interaction and quaternary structure.
    Janin J; Bahadur RP; Chakrabarti P
    Q Rev Biophys; 2008 May; 41(2):133-80. PubMed ID: 18812015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding oligomerization in 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni: an in silico approach and evidence for an active protein.
    Hoffmann F; Sotriffer C; Evers A; Xiong G; Maser E
    J Biotechnol; 2007 Mar; 129(1):131-9. PubMed ID: 17258342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity.
    Okorokov AL; Sherman MB; Plisson C; Grinkevich V; Sigmundsson K; Selivanova G; Milner J; Orlova EV
    EMBO J; 2006 Nov; 25(21):5191-200. PubMed ID: 17053786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences.
    Li W; Meyer CA; Liu XS
    Bioinformatics; 2005 Jun; 21 Suppl 1():i274-82. PubMed ID: 15961467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond de novo protein design--de novo design of non-natural folded oligomers.
    Cheng RP
    Curr Opin Struct Biol; 2004 Aug; 14(4):512-20. PubMed ID: 15313247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.