BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 14984035)

  • 1. Evolution of OTP-independent larval skeleton patterning in the direct-developing sea urchin, Heliocidaris erythrogramma.
    Zhou N; Wilson KA; Andrews ME; Kauffman JS; Raff RA
    J Exp Zool B Mol Dev Evol; 2003 Dec; 300(1):58-71. PubMed ID: 14984035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris.
    Israel JW; Martik ML; Byrne M; Raff EC; Raff RA; McClay DR; Wray GA
    PLoS Biol; 2016 Mar; 14(3):e1002391. PubMed ID: 26943850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nodal and BMP expression during the transition to pentamery in the sea urchin Heliocidaris erythrogramma: insights into patterning the enigmatic echinoderm body plan.
    Koop D; Cisternas P; Morris VB; Strbenac D; Yang JY; Wray GA; Byrne M
    BMC Dev Biol; 2017 Feb; 17(1):4. PubMed ID: 28193178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative analysis of egg provisioning using mass spectrometry during rapid life history evolution in sea urchins.
    Davidson PL; Thompson JW; Foster MW; Moseley MA; Byrne M; Wray GA
    Evol Dev; 2019 Jul; 21(4):188-204. PubMed ID: 31102332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell transcriptomics reveals evolutionary reconfiguration of embryonic cell fate specification in the sea urchin
    Massri AJ; Berrio A; Afanassiev A; Greenstreet L; Pipho K; Byrne M; Schiebinger G; McClay DR; Wray GA
    bioRxiv; 2024 May; ():. PubMed ID: 38746376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Branching out: origins of the sea urchin larval skeleton in development and evolution.
    McIntyre DC; Lyons DC; Martik M; McClay DR
    Genesis; 2014 Mar; 52(3):173-85. PubMed ID: 24549853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton.
    Koga H; Fujitani H; Morino Y; Miyamoto N; Tsuchimoto J; Shibata TF; Nozawa M; Shigenobu S; Ogura A; Tachibana K; Kiyomoto M; Amemiya S; Wada H
    PLoS One; 2016; 11(2):e0149067. PubMed ID: 26866800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sea Urchin Morphogenesis.
    McClay DR
    Curr Top Dev Biol; 2016; 117():15-29. PubMed ID: 26969970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental origin of peripheral ciliary band neurons in the sea urchin embryo.
    Slota LA; Miranda E; Peskin B; McClay DR
    Dev Biol; 2020 Mar; 459(2):72-78. PubMed ID: 31881199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo.
    Yaguchi S; Yaguchi J; Inaba K
    Sci Rep; 2014 Oct; 4():6852. PubMed ID: 25358387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo.
    Bessodes N; Haillot E; Duboc V; Röttinger E; Lahaye F; Lepage T
    PLoS Genet; 2012; 8(12):e1003121. PubMed ID: 23271979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development.
    Voronina E; Lopez M; Juliano CE; Gustafson E; Song JL; Extavour C; George S; Oliveri P; McClay D; Wessel G
    Dev Biol; 2008 Feb; 314(2):276-86. PubMed ID: 18191830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A database of mRNA expression patterns for the sea urchin embryo.
    Wei Z; Angerer RC; Angerer LM
    Dev Biol; 2006 Dec; 300(1):476-84. PubMed ID: 17007833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention of exogenous mRNAs selectively in the germ cells of the sea urchin requires only a 5'-cap and a 3'-UTR.
    Oulhen N; Wessel GM
    Mol Reprod Dev; 2013 Jul; 80(7):561-9. PubMed ID: 23686945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meiotic gene expression initiates during larval development in the sea urchin.
    Yajima M; Suglia E; Gustafson EA; Wessel GM
    Dev Dyn; 2013 Feb; 242(2):155-63. PubMed ID: 23172739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of thyrotropin-releasing hormone producing neurons in sea urchin, from larva to juvenile.
    Cocurullo M; Paganos P; Benvenuto G; Arnone MI
    Front Neurosci; 2024; 18():1378520. PubMed ID: 38660219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization and origins of juvenile skeletogenic cells in the sea urchin Lytechinuspictus.
    Tate HM; Barone V; Schrankel CS; Hamdoun A; Lyons DC
    Dev Biol; 2024 Jun; 514():12-27. PubMed ID: 38862087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Epigenomes Reveal Extensive Local Genetic Changes to Chromatin Accessibility Contribute to Divergence in Embryonic Gene Expression Between Species.
    Devens HR; Davidson PL; Byrne M; Wray GA
    Mol Biol Evol; 2023 Nov; 40(11):. PubMed ID: 37823438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Larval size and age affect colonization in a marine invertebrate.
    Marshall DJ; Steinberg PD
    J Exp Biol; 2014 Nov; 217(Pt 22):3981-7. PubMed ID: 25267847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural antisense transcription of presenilin in sea urchin reveals a possible role for natural antisense transcription in the general control of gene expression during development.
    Bronchain O; Ducos B; Putzer H; Delagrange M; Laalami S; Philippe-Caraty L; Saroul K; Ciapa B
    J Cell Sci; 2023 Jul; 136(14):. PubMed ID: 37345489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.