These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 14984774)

  • 1. Estimating the bacterial lag time: which model, which precision?
    Baty F; Delignette-Muller ML
    Int J Food Microbiol; 2004 Mar; 91(3):261-77. PubMed ID: 14984774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell division theory and individual-based modeling of microbial lag: part I. The theory of cell division.
    Dens EJ; Bernaerts K; Standaert AR; Van Impe JF
    Int J Food Microbiol; 2005 Jun; 101(3):303-18. PubMed ID: 15925713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modelling methodologies in predictive food microbiology: a SWOT analysis.
    Ferrer J; Prats C; López D; Vives-Rego J
    Int J Food Microbiol; 2009 Aug; 134(1-2):2-8. PubMed ID: 19217180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical evaluation of mathematical models for microbial growth.
    López S; Prieto M; Dijkstra J; Dhanoa MS; France J
    Int J Food Microbiol; 2004 Nov; 96(3):289-300. PubMed ID: 15454319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A prototype model structure for mixed microbial populations in homogeneous food products.
    Dens EJ; Vereecken KM; Van Impe JF
    J Theor Biol; 1999 Dec; 201(3):159-70. PubMed ID: 10600360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the lag phase and initial decline of microbial growth curves.
    Yates GT; Smotzer T
    J Theor Biol; 2007 Feb; 244(3):511-7. PubMed ID: 17028032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a novel class of predictive microbial growth models.
    Van Impe JF; Poschet F; Geeraerd AH; Vereecken KM
    Int J Food Microbiol; 2005 Apr; 100(1-3):97-105. PubMed ID: 15854696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the effect of temperature on the growth rate and lag phase of Penicillium expansum in apples.
    Baert K; Valero A; De Meulenaer B; Samapundo S; Ahmed MM; Bo L; Debevere J; Devlieghere F
    Int J Food Microbiol; 2007 Sep; 118(2):139-50. PubMed ID: 17698233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The future of predictive microbiology: strategic research, innovative applications and great expectations.
    McMeekin T; Bowman J; McQuestin O; Mellefont L; Ross T; Tamplin M
    Int J Food Microbiol; 2008 Nov; 128(1):2-9. PubMed ID: 18703250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connection between stochastic and deterministic modelling of microbial growth.
    Kutalik Z; Razaz M; Baranyi J
    J Theor Biol; 2005 Jan; 232(2):285-99. PubMed ID: 15530497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined physico-chemical and water transfer modelling to predict bacterial growth during food processes.
    Lebert I; Dussap CG; Lebert A
    Int J Food Microbiol; 2005 Jul; 102(3):305-22. PubMed ID: 16014298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive modeling of microorganisms: LAG and LIP in monotonic growth.
    Vadasz P; Vadasz AS
    Int J Food Microbiol; 2005 Jul; 102(3):257-75. PubMed ID: 16014294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive modelling of the microbial lag phase: a review.
    Swinnen IA; Bernaerts K; Dens EJ; Geeraerd AH; Van Impe JF
    Int J Food Microbiol; 2004 Jul; 94(2):137-59. PubMed ID: 15193801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and IbM simulation of the stages in bacterial lag phase: basis for an updated definition.
    Prats C; Giró A; Ferrer J; López D; Vives-Rego J
    J Theor Biol; 2008 May; 252(1):56-68. PubMed ID: 18329047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of primary predictive models to study the growth of Listeria monocytogenes at low temperatures in liquid cultures and selection of fastest growing ribotypes in meat and turkey product slurries.
    Pal A; Labuza TP; Diez-Gonzalez F
    Food Microbiol; 2008 May; 25(3):460-70. PubMed ID: 18355671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth kinetics of Listeria monocytogenes in broth and beef frankfurters--determination of lag phase duration and exponential growth rate under isothermal conditions.
    Huang L
    J Food Sci; 2008 Jun; 73(5):E235-42. PubMed ID: 18576996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between the change in the kinetics of the ribosomal RNA rrnB P2 promoter and the transition from lag to exponential phase with Pseudomonas fluorescens.
    McKellar RC
    Int J Food Microbiol; 2008 Jan; 121(1):11-7. PubMed ID: 18036694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lessons from the organization of a proficiency testing program in food microbiology by interlaboratory comparison: analytical methods in use, impact of methods on bacterial counts and measurement uncertainty of bacterial counts.
    Augustin JC; Carlier V
    Food Microbiol; 2006 Feb; 23(1):1-38. PubMed ID: 16942983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of starvation on expression of the ribosomal RNA rrnB P2 promoter during the lag phase of Pseudomonas fluorescens.
    McKellar RC
    Int J Food Microbiol; 2007 Mar; 114(3):307-15. PubMed ID: 17169452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.