These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 14984774)

  • 21. Assessment of distributions for fitting lag times of individual cells in bacterial populations.
    McKellar RC; Hawke A
    Int J Food Microbiol; 2006 Feb; 106(2):169-75. PubMed ID: 16242199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological implications from an autonomous version of Baranyi and Roberts growth model.
    Vadasz P; Vadasz AS
    Int J Food Microbiol; 2007 Mar; 114(3):357-65. PubMed ID: 17140684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of environmental parameters (temperature, pH and a(w)) on the individual cell lag phase and generation time of Listeria monocytogenes.
    Francois K; Devlieghere F; Standaert AR; Geeraerd AH; Van Impe JF; Debevere J
    Int J Food Microbiol; 2006 May; 108(3):326-35. PubMed ID: 16488043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of non-linear microbial inactivation kinetics under dynamic conditions.
    Valdramidis VP; Geeraerd AH; Bernaerts K; Van Impe JF
    Int J Food Microbiol; 2008 Nov; 128(1):146-52. PubMed ID: 18823671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current trends in predictive modelling of microbial lag phenomena.
    Swinnen IA; Bernaerts K; Dens EJ; Geeraerd AH; Van Impe JF
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3b):495-502. PubMed ID: 15954644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A parallel study on bacterial growth and inactivation.
    Baranyi J; Pin C
    J Theor Biol; 2001 Jun; 210(3):327-36. PubMed ID: 11397133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modelling the growth of Leuconostoc mesenteroides by Artificial Neural Networks.
    García-Gimeno RM; Hervás-Martínez C; Rodríguez-Pérez R; Zurera-Cosano G
    Int J Food Microbiol; 2005 Dec; 105(3):317-32. PubMed ID: 16054719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling the effect of a temperature shift on the lag phase duration of Listeria monocytogenes.
    Delignette-Muller ML; Baty F; Cornu M; Bergis H
    Int J Food Microbiol; 2005 Apr; 100(1-3):77-84. PubMed ID: 15854694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Individual-based modelling of bacterial cultures to study the microscopic causes of the lag phase.
    Prats C; López D; Giró A; Ferrer J; Valls J
    J Theor Biol; 2006 Aug; 241(4):939-53. PubMed ID: 16524598
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of sensitivity analysis to aid interpretation of a probabilistic Bacillus cereus spore lag time model applied to heat-treated chilled foods (REPFEDs).
    Membré JM; Kan-King-Yu D; Blackburn Cde W
    Int J Food Microbiol; 2008 Nov; 128(1):28-33. PubMed ID: 18691785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mathematical properties of the quasi-chemical model for microorganism growth-death kinetics in foods.
    Ross EW; Taub IA; Doona CJ; Feeherry FE; Kustin K
    Int J Food Microbiol; 2005 Mar; 99(2):157-71. PubMed ID: 15734564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Viable count estimates of lag time responses for Salmonella typhimurium M48 subjected to abrupt osmotic shifts.
    Mellefont LA; McMeekin TA; Ross T
    Int J Food Microbiol; 2005 Dec; 105(3):399-410. PubMed ID: 16109449
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of sub-lethal heating and growth temperature on expression of the ribosomal RNA rrnB P(2) promoter during the lag phase of Pseudomonas fluorescens.
    McKellar RC
    Int J Food Microbiol; 2007 May; 116(2):248-59. PubMed ID: 17368596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development and validation of a mathematical model to describe the growth of Pseudomonas spp. in raw poultry stored under aerobic conditions.
    Dominguez SA; Schaffner DW
    Int J Food Microbiol; 2007 Dec; 120(3):287-95. PubMed ID: 17949841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of definitions of the lag phase and the exponential phase in bacterial growth.
    Zwietering MH; Rombouts FM; van 't Riet K
    J Appl Bacteriol; 1992 Feb; 72(2):139-45. PubMed ID: 1556037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accounting for inherent variability of growth in microbial risk assessment.
    Marks HM; Coleman ME
    Int J Food Microbiol; 2005 Apr; 100(1-3):275-87. PubMed ID: 15854712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Behavior of inactivation kinetics of Escherichia coli by dense phase carbon dioxide.
    Liao H; Zhang Y; Hu X; Liao X; Wu J
    Int J Food Microbiol; 2008 Aug; 126(1-2):93-7. PubMed ID: 18565607
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predictive models for growth of Salmonella typhimurium DT104 from low and high initial density on ground chicken with a natural microflora.
    Oscar TP
    Food Microbiol; 2007 Sep; 24(6):640-51. PubMed ID: 17418316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling the variability of lag times and the first generation times of single cells of E. coli.
    Métris A; Le Marc Y; Elfwing A; Ballagi A; Baranyi J
    Int J Food Microbiol; 2005 Apr; 100(1-3):13-9. PubMed ID: 15854688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments.
    Van Derlinden E; Bernaerts K; Van Impe JF
    Int J Food Microbiol; 2008 Nov; 128(1):89-100. PubMed ID: 18835500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.