These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 14985027)

  • 1. Synthesis and controlling the morphology of CdS nanocrystals via hydrothermal microemulsions.
    Zhang P; Gao L
    J Colloid Interface Sci; 2004 Apr; 272(1):99-103. PubMed ID: 14985027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of zinc sulfide nanorods and nanoparticles in ternary W/O microemulsions.
    Xu J; Li Y
    J Colloid Interface Sci; 2003 Mar; 259(2):275-81. PubMed ID: 16256506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth and optical properties of wurtzite-type CdS nanocrystals.
    Cao H; Wang G; Zhang S; Zhang X; Rabinovich D
    Inorg Chem; 2006 Jun; 45(13):5103-8. PubMed ID: 16780332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of Nanosized Crystalline CdS Particles by the Hydrothermal Treatment.
    So WW; Jang JS; Rhee YW; Kim KJ; Moon SJ
    J Colloid Interface Sci; 2001 May; 237(1):136-141. PubMed ID: 11334525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of single crystal CdMoO4 octahedral microparticles via microemulsion-mediated route.
    Gong Q; Li G; Qian X; Cao H; Du W; Ma X
    J Colloid Interface Sci; 2006 Dec; 304(2):408-12. PubMed ID: 17046782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape control of monodisperse CdS nanocrystals: hexagon and pyramid.
    Cheng Y; Wang Y; Bao F; Chen D
    J Phys Chem B; 2006 May; 110(19):9448-51. PubMed ID: 16686489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide.
    Kolen'ko YV; Kovnir KA; Gavrilov AI; Garshev AV; Frantti J; Lebedev OI; Churagulov BR; Van Tendeloo G; Yoshimura M
    J Phys Chem B; 2006 Mar; 110(9):4030-8. PubMed ID: 16509693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room-temperature Wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by controlling their unfolding peptide structures.
    Banerjee IA; Yu L; Matsui H
    J Am Chem Soc; 2005 Nov; 127(46):16002-3. PubMed ID: 16287268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and morphology control of ZnO nanostructures in microemulsions.
    Li X; He G; Xiao G; Liu H; Wang M
    J Colloid Interface Sci; 2009 May; 333(2):465-73. PubMed ID: 19286190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance.
    Lin J; Lin J; Zhu Y
    Inorg Chem; 2007 Oct; 46(20):8372-8. PubMed ID: 17722916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altering the crystal morphology of silicalite-1 through microemulsion-based synthesis.
    Lin JC; Yates MZ
    Langmuir; 2005 Mar; 21(6):2117-20. PubMed ID: 15751996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network.
    Chen X; Xu H; Xu N; Zhao F; Lin W; Lin G; Fu Y; Huang Z; Wang H; Wu M
    Inorg Chem; 2003 May; 42(9):3100-6. PubMed ID: 12716207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of nanocrystal-polymer transparent hybrids via polyurethane matrix grafted onto functionalized CdS nanocrystals.
    Chen S; Zhu J; Shen Y; Hu C; Chen L
    Langmuir; 2007 Jan; 23(2):850-4. PubMed ID: 17209643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of one-dimensional CdSe by a novel reverse micelle assisted hydrothermal method.
    Xi L; Lam YM; Xu YP; Li LJ
    J Colloid Interface Sci; 2008 Apr; 320(2):491-500. PubMed ID: 18291411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-triggered self-assembly of ZnO: from nanocrystals to nanorods to tablets.
    Hu Y; Mei T; Guo J; White T
    Inorg Chem; 2007 Dec; 46(26):11031-5. PubMed ID: 18041819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocrystal growth on graphene with various degrees of oxidation.
    Wang H; Robinson JT; Diankov G; Dai H
    J Am Chem Soc; 2010 Mar; 132(10):3270-1. PubMed ID: 20166667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO(4) nanocrystals.
    Fan W; Song X; Bu Y; Sun S; Zhao X
    J Phys Chem B; 2006 Nov; 110(46):23247-54. PubMed ID: 17107173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal formation and growth during the hydrothermal synthesis of beta-Ni(OH)2 in one-dimensional nano space.
    Orikasa H; Karoji J; Matsui K; Kyotani T
    Dalton Trans; 2007 Sep; (34):3757-62. PubMed ID: 17712441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property.
    Yao WT; Yu SH; Liu SJ; Chen JP; Liu XM; Li FQ
    J Phys Chem B; 2006 Jun; 110(24):11704-10. PubMed ID: 16800466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process.
    Pal U; Santiago P
    J Phys Chem B; 2005 Aug; 109(32):15317-21. PubMed ID: 16852941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.