These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 14985086)

  • 61. A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone.
    Galley SA; Michalek DJ; Donahue SW
    J Biomech; 2006; 39(11):2026-33. PubMed ID: 16115637
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A finite element model predicts the mechanotransduction response of tendon cells to cyclic tensile loading.
    Lavagnino M; Arnoczky SP; Kepich E; Caballero O; Haut RC
    Biomech Model Mechanobiol; 2008 Oct; 7(5):405-16. PubMed ID: 17901992
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fluid shear of low magnitude increases growth and expression of TGFbeta1 and adhesion molecules in human bone cells in vitro.
    Liegibel UM; Sommer U; Bundschuh B; Schweizer B; Hilscher U; Lieder A; Nawroth P; Kasperk C
    Exp Clin Endocrinol Diabetes; 2004 Jul; 112(7):356-63. PubMed ID: 15239020
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain.
    Smalt R; Mitchell FT; Howard RL; Chambers TJ
    Am J Physiol; 1997 Oct; 273(4):E751-8. PubMed ID: 9357805
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Polycystin 2 is involved in the nitric oxide production in responding to oscillating fluid shear in MLO-Y4 cells.
    Xu H; Guan Y; Wu J; Zhang J; Duan J; An L; Shang P
    J Biomech; 2014 Jan; 47(2):387-91. PubMed ID: 24268313
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Parallel-plate fluid flow systems for bone cell stimulation.
    Huesa C; Helfrich MH; Aspden RM
    J Biomech; 2010 Apr; 43(6):1182-9. PubMed ID: 20031135
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm?
    Bacabac RG; Smit TH; Van Loon JJ; Doulabi BZ; Helder M; Klein-Nulend J
    FASEB J; 2006 May; 20(7):858-64. PubMed ID: 16675843
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Quantification and significance of fluid shear stress field in biaxial cell stretching device.
    Thompson MS; Abercrombie SR; Ott CE; Bieler FH; Duda GN; Ventikos Y
    Biomech Model Mechanobiol; 2011 Jul; 10(4):559-64. PubMed ID: 20853016
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fluid shear stress in trabecular bone marrow due to low-magnitude high-frequency vibration.
    Coughlin TR; Niebur GL
    J Biomech; 2012 Aug; 45(13):2222-9. PubMed ID: 22784651
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Poroelastic evaluation of fluid movement through the lacunocanalicular system.
    Goulet GC; Coombe D; Martinuzzi RJ; Zernicke RF
    Ann Biomed Eng; 2009 Jul; 37(7):1390-402. PubMed ID: 19415492
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evidence for shear-induced increase in membrane fluidity in the dinoflagellate Lingulodinium polyedrum.
    Mallipattu SK; Haidekker MA; Von Dassow P; Latz MI; Frangos JA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Jun; 188(5):409-16. PubMed ID: 12073085
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Time-dependent deformations in bone cells exposed to fluid flow in vitro: investigating the role of cellular deformation in fluid flow-induced signaling.
    Kwon RY; Jacobs CR
    J Biomech; 2007; 40(14):3162-8. PubMed ID: 17559856
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mechanotransduction in bone cells: induction of nitric oxide and prostaglandin synthesis by fluid shear stress, but not by mechanical strain.
    Smalt R; Mitchell FT; Howard RL; Chambers TJ
    Adv Exp Med Biol; 1997; 433():311-4. PubMed ID: 9561159
    [No Abstract]   [Full Text] [Related]  

  • 75. Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE(2) but no change in mineralization.
    Nauman EA; Satcher RL; Keaveny TM; Halloran BP; Bikle DD
    J Appl Physiol (1985); 2001 May; 90(5):1849-54. PubMed ID: 11299276
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Estimation of bone permeability considering the morphology of lacuno-canalicular porosity.
    Kameo Y; Adachi T; Sato N; Hojo M
    J Mech Behav Biomed Mater; 2010 Apr; 3(3):240-8. PubMed ID: 20142108
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Response of normal and osteoporotic human bone cells to mechanical stress in vitro.
    Sterck JG; Klein-Nulend J; Lips P; Burger EH
    Am J Physiol; 1998 Jun; 274(6):E1113-20. PubMed ID: 9611164
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques.
    Birmingham E; Grogan JA; Niebur GL; McNamara LM; McHugh PE
    Ann Biomed Eng; 2013 Apr; 41(4):814-26. PubMed ID: 23519534
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Centrifugation attenuates the fluid shear response of circulating leukocytes.
    Fukuda S; Schmid-Schönbein GW
    J Leukoc Biol; 2002 Jul; 72(1):133-9. PubMed ID: 12101272
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mechanosensitivity of bone cells to oscillating fluid flow induced shear stress may be modulated by chemotransport.
    Donahue TL; Haut TR; Yellowley CE; Donahue HJ; Jacobs CR
    J Biomech; 2003 Sep; 36(9):1363-71. PubMed ID: 12893045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.