BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 14985532)

  • 1. Altering the sequence specificity of HaeIII methyltransferase by directed evolution using in vitro compartmentalization.
    Cohen HM; Tawfik DS; Griffiths AD
    Protein Eng Des Sel; 2004 Jan; 17(1):3-11. PubMed ID: 14985532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changing the DNA recognition specificity of the EcoDam DNA-(adenine-N6)-methyltransferase by directed evolution.
    Chahar S; Elsawy H; Ragozin S; Jeltsch A
    J Mol Biol; 2010 Jan; 395(1):79-88. PubMed ID: 19766657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Purification and site-directed mutagenesis of DNA methyltransferase SssI].
    Darií MV; Kirsanova OV; Drutsa VL; Kochetkov SN; Gromova ES
    Mol Biol (Mosk); 2007; 41(1):121-9. PubMed ID: 17380899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of sequence-specific DNA methylation: target recognition and catalysis are coupled in M.HhaI.
    Youngblood B; Buller F; Reich NO
    Biochemistry; 2006 Dec; 45(51):15563-72. PubMed ID: 17176077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. S-adenosyl-L-methionine-dependent methyl transfer: observable precatalytic intermediates during DNA cytosine methylation.
    Youngblood B; Shieh FK; Buller F; Bullock T; Reich NO
    Biochemistry; 2007 Jul; 46(30):8766-75. PubMed ID: 17616174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered extrahelical base destabilization enhances sequence discrimination of DNA methyltransferase M.HhaI.
    Youngblood B; Shieh FK; De Los Rios S; Perona JJ; Reich NO
    J Mol Biol; 2006 Sep; 362(2):334-46. PubMed ID: 16919299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promiscuous methylation of non-canonical DNA sites by HaeIII methyltransferase.
    Cohen HM; Tawfik DS; Griffiths AD
    Nucleic Acids Res; 2002 Sep; 30(17):3880-5. PubMed ID: 12202773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of amino acids important for target recognition by the DNA:m5C methyltransferase M.NgoPII by alanine-scanning mutagenesis of residues at the protein-DNA interface.
    Radlinska M; Kondrzycka-Dada A; Piekarowicz A; Bujnicki JM
    Proteins; 2005 Feb; 58(2):263-70. PubMed ID: 15558546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. M.(phi)BssHII, a novel cytosine-C5-DNA-methyltransferase with target-recognizing domains at separated locations of the enzyme.
    Sethmann S; Ceglowski P; Willert J; Iwanicka-Nowicka R; Trautner TA; Walter J
    EMBO J; 1999 Jun; 18(12):3502-8. PubMed ID: 10369689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cytosine N4-methyltransferase M.PvuII also modifies adenine residues.
    Jeltsch A
    Biol Chem; 2001 Apr; 382(4):707-10. PubMed ID: 11405235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG [correction of non-CpA] sites.
    Gowher H; Jeltsch A
    J Mol Biol; 2001 Jun; 309(5):1201-8. PubMed ID: 11399089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein fragment complementation in M.HhaI DNA methyltransferase.
    Choe W; Chandrasegaran S; Ostermeier M
    Biochem Biophys Res Commun; 2005 Sep; 334(4):1233-40. PubMed ID: 16040000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a subdomain within DNA-(cytosine-C5)-methyltransferases responsible for the recognition of the 5' part of their DNA target.
    Lange C; Wild C; Trautner TA
    EMBO J; 1996 Mar; 15(6):1443-50. PubMed ID: 8635477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis defines the catalytic aspartate in the active site of the atypical DNA: m4C methyltransferase M.NgoMXV.
    Radlinska M; Bujnicki JM
    Acta Microbiol Pol; 2001; 50(2):97-105. PubMed ID: 11720315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ricin A-chain substrate specificity in RNA, DNA, and hybrid stem-loop structures.
    Amukele TK; Schramm VL
    Biochemistry; 2004 May; 43(17):4913-22. PubMed ID: 15109249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial engineering to enhance amylosucrase performance: construction, selection, and screening of variant libraries for increased activity.
    van der Veen BA; Potocki-Véronèse G; Albenne C; Joucla G; Monsan P; Remaud-Simeon M
    FEBS Lett; 2004 Feb; 560(1-3):91-7. PubMed ID: 14988004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exact size and organization of DNA target-recognizing domains of multispecific DNA-(cytosine-C5)-methyltransferases.
    Trautner TA; Pawlek B; Behrens B; Willert J
    EMBO J; 1996 Mar; 15(6):1434-42. PubMed ID: 8635476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Probing of contacts between EcoRII DNA methyltransferase and DNA using substrate analogs and molecular modeling].
    Kudan EV; Brevnov MG; Subach OM; Rechkoblit OA; Buĭnitskiĭ IaM; Gromova ES
    Mol Biol (Mosk); 2007; 41(5):885-99. PubMed ID: 18240571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changing the recognition specificity of a DNA-methyltransferase by in vitro evolution.
    Tímár E; Groma G; Kiss A; Venetianer P
    Nucleic Acids Res; 2004; 32(13):3898-903. PubMed ID: 15273276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating Synthetic Oligonucleotides via Gene Reassembly (ISOR): a versatile tool for generating targeted libraries.
    Herman A; Tawfik DS
    Protein Eng Des Sel; 2007 May; 20(5):219-26. PubMed ID: 17483523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.