These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 14986100)

  • 1. Neurotrophin receptors and enteric neuronal development during metamorphosis in the amphibian Xenopus laevis.
    Sundqvist M; Holmgren S
    Cell Tissue Res; 2004 Apr; 316(1):45-54. PubMed ID: 14986100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of neurotrophin receptors and transmitters in the developing Xenopus gut.
    Holmberg A; Hägg U; Fritsche R; Holmgren S
    Cell Tissue Res; 2001 Oct; 306(1):35-47. PubMed ID: 11683180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anteroposterior gradient of epithelial transformation during amphibian intestinal remodeling: immunohistochemical detection of intestinal fatty acid-binding protein.
    Ishizuya-Oka A; Ueda S; Damjanovski S; Li Q; Liang VC; Shi YB
    Dev Biol; 1997 Dec; 192(1):149-61. PubMed ID: 9405104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the connective tissue in the digestive tract of the larval and metamorphosing Xenopus laevis.
    Ishizuya-Oka A; Shimozawa A
    Anat Anz; 1987; 164(2):81-93. PubMed ID: 3674459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of enteric and vagal innervation of the zebrafish (Danio rerio) gut.
    Olsson C; Holmberg A; Holmgren S
    J Comp Neurol; 2008 Jun; 508(5):756-70. PubMed ID: 18393294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the control of gastric motor activity during metamorphosis in the amphibian Xenopus laevis, with special emphasis on purinergic mechanisms.
    Sundqvist M; Holmgren S
    J Exp Biol; 2008 Apr; 211(Pt 8):1270-80. PubMed ID: 18375852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ontogeny of excitatory and inhibitory control of gastrointestinal motility in the African clawed frog, Xenopus laevis.
    Sundqvist M; Holmgren S
    Am J Physiol Regul Integr Comp Physiol; 2006 Oct; 291(4):R1138-44. PubMed ID: 16709647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmed cell death and heterolysis of larval epithelial cells by macrophage-like cells in the anuran small intestine in vivo and in vitro.
    Ishizuya-Oka A; Shimozawa A
    J Morphol; 1992 Aug; 213(2):185-95. PubMed ID: 1518071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the olfactory nerve in the African clawed frog, Xenopus laevis: I. Normal development.
    Burd GD
    J Comp Neurol; 1991 Feb; 304(1):123-34. PubMed ID: 2016408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remodeling of the intestine during metamorphosis of Xenopus laevis.
    Schreiber AM; Cai L; Brown DD
    Proc Natl Acad Sci U S A; 2005 Mar; 102(10):3720-5. PubMed ID: 15738398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro studies of spontaneous and corticosteroid-induced apoptosis of lymphocyte populations from metamorphosing frogs/RU486 inhibition.
    Barker KS; Davis AT; Li B; Rollins-Smith LA
    Brain Behav Immun; 1997 Jun; 11(2):119-31. PubMed ID: 9299061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cadmium on growth, metamorphosis and gonadal sex differentiation in tadpoles of the African clawed frog, Xenopus laevis.
    Sharma B; Patiño R
    Chemosphere; 2009 Aug; 76(8):1048-55. PubMed ID: 19457541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal expression profile of no29/nucleophosmin3 in the intestine of Xenopus laevis during metamorphosis.
    Motoi N; Hasebe T; Suzuki KT; Ishizuya-Oka A
    Cell Tissue Res; 2011 Jun; 344(3):445-53. PubMed ID: 21519897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis.
    Gibbs KM; Chittur SV; Szaro BG
    Eur J Neurosci; 2011 Jan; 33(1):9-25. PubMed ID: 21059114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metamorphosis alters the response to spinal cord transection in Xenopus laevis frogs.
    Beattie MS; Bresnahan JC; Lopate G
    J Neurobiol; 1990 Oct; 21(7):1108-22. PubMed ID: 2258724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative analysis of cellular and matrix changes in Meckel's cartilage in Xenopus laevis.
    Thomson DA
    J Anat; 1987 Apr; 151():249-54. PubMed ID: 3654355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substance P and vasoactive intestinal peptide in rat small-bowel isografts.
    Tomita R; Fujisaki S; Park E; Ikeda T; Koshinaga T
    Am J Surg; 2005 Jan; 189(1):63-70. PubMed ID: 15701495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nervous system development in normal and atresic chick embryo intestine: an immunohistochemical study.
    Parisi Salvi E; Vaccaro R; Baglaj SM; Renda T
    Anat Embryol (Berl); 2004 Dec; 209(2):143-51. PubMed ID: 15597193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apoptosis of larval cells during amphibian metamorphosis.
    Ishizuya-Oka A
    Microsc Res Tech; 1996 Jun; 34(3):228-35. PubMed ID: 8743410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stress, tissue remodeling and regression during amphibian metamorphosis.
    Menon J; Rozman R
    Comp Biochem Physiol C Toxicol Pharmacol; 2007 May; 145(4):625-31. PubMed ID: 17395540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.