BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 14986171)

  • 21. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species.
    Ellisen LW; Ramsayer KD; Johannessen CM; Yang A; Beppu H; Minda K; Oliner JD; McKeon F; Haber DA
    Mol Cell; 2002 Nov; 10(5):995-1005. PubMed ID: 12453409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential gene expression in p53-mediated apoptosis-resistant vs. apoptosis-sensitive tumor cell lines.
    Maxwell SA; Davis GE
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13009-14. PubMed ID: 11069295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Balance of NF-kappaB and p38 MAPK is a determinant of radiosensitivity of the AML-2 and its doxorubicin-resistant cell lines.
    Choi CH; Xu H; Bark H; Lee TB; Yun J; Kang SI; Oh YK
    Leuk Res; 2007 Sep; 31(9):1267-76. PubMed ID: 17218010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. p53 dependent apoptosis in glioma cell lines in response to hydrogen peroxide induced oxidative stress.
    Datta K; Babbar P; Srivastava T; Sinha S; Chattopadhyay P
    Int J Biochem Cell Biol; 2002 Feb; 34(2):148-57. PubMed ID: 11809417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. E2F1 regulates p53R2 gene expression in p53-deficient cells.
    Qi JJ; Liu L; Cao JX; An GS; Li SY; Li G; Jia HT; Ni JH
    Mol Cell Biochem; 2015 Jan; 399(1-2):179-88. PubMed ID: 25312903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species.
    Donald SP; Sun XY; Hu CA; Yu J; Mei JM; Valle D; Phang JM
    Cancer Res; 2001 Mar; 61(5):1810-5. PubMed ID: 11280728
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of NEEP21, encoding neuron-enriched endosomal protein of 21 kDa, as a transcriptional target of tumor suppressor p53.
    Ohnishi S; Futamura M; Kamino H; Nakamura Y; Kitamura N; Miyamoto Y; Miyamoto T; Shinogi D; Goda O; Arakawa H
    Int J Oncol; 2010 Nov; 37(5):1133-41. PubMed ID: 20878061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA damage-induced downregulation of Cdc25C is mediated by p53 via two independent mechanisms: one involves direct binding to the cdc25C promoter.
    St Clair S; Giono L; Varmeh-Ziaie S; Resnick-Silverman L; Liu WJ; Padi A; Dastidar J; DaCosta A; Mattia M; Manfredi JJ
    Mol Cell; 2004 Dec; 16(5):725-36. PubMed ID: 15574328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SAK, a new polo-like kinase, is transcriptionally repressed by p53 and induces apoptosis upon RNAi silencing.
    Li J; Tan M; Li L; Pamarthy D; Lawrence TS; Sun Y
    Neoplasia; 2005 Apr; 7(4):312-23. PubMed ID: 15967108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway.
    Rivera A; Maxwell SA
    J Biol Chem; 2005 Aug; 280(32):29346-54. PubMed ID: 15914462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis.
    Okamura S; Arakawa H; Tanaka T; Nakanishi H; Ng CC; Taya Y; Monden M; Nakamura Y
    Mol Cell; 2001 Jul; 8(1):85-94. PubMed ID: 11511362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability.
    Budanov AV; Shoshani T; Faerman A; Zelin E; Kamer I; Kalinski H; Gorodin S; Fishman A; Chajut A; Einat P; Skaliter R; Gudkov AV; Chumakov PM; Feinstein E
    Oncogene; 2002 Sep; 21(39):6017-31. PubMed ID: 12203114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A putative protein inhibitor of activated STAT (PIASy) interacts with p53 and inhibits p53-mediated transactivation but not apoptosis.
    Nelson V; Davis GE; Maxwell SA
    Apoptosis; 2001 Jun; 6(3):221-34. PubMed ID: 11388671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. UV-dependent alternative splicing uncouples p53 activity and PIG3 gene function through rapid proteolytic degradation.
    Nicholls CD; Shields MA; Lee PW; Robbins SM; Beattie TL
    J Biol Chem; 2004 Jun; 279(23):24171-8. PubMed ID: 15067011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site.
    Takimoto R; El-Deiry WS
    Oncogene; 2000 Mar; 19(14):1735-43. PubMed ID: 10777207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TAp63gamma can substitute for p53 in inducing expression of the maspin tumor suppressor.
    Spiesbach K; Tannapfel A; Mössner J; Engeland K
    Int J Cancer; 2005 Apr; 114(4):555-62. PubMed ID: 15578720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage.
    Chao C; Saito S; Kang J; Anderson CW; Appella E; Xu Y
    EMBO J; 2000 Sep; 19(18):4967-75. PubMed ID: 10990460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hypoxia induces p53-dependent transactivation and Fas/CD95-dependent apoptosis.
    Liu T; Laurell C; Selivanova G; Lundeberg J; Nilsson P; Wiman KG
    Cell Death Differ; 2007 Mar; 14(3):411-21. PubMed ID: 16917513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program.
    Gomes NP; Bjerke G; Llorente B; Szostek SA; Emerson BM; Espinosa JM
    Genes Dev; 2006 Mar; 20(5):601-12. PubMed ID: 16510875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells.
    Burns TF; Fei P; Scata KA; Dicker DT; El-Deiry WS
    Mol Cell Biol; 2003 Aug; 23(16):5556-71. PubMed ID: 12897130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.