BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 14986315)

  • 1. Analysis of bending behavior of native and engineered auricular and costal cartilage.
    Roy R; Kohles SS; Zaporojan V; Peretti GM; Randolph MA; Xu J; Bonassar LJ
    J Biomed Mater Res A; 2004 Mar; 68(4):597-602. PubMed ID: 14986315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of noninvasive evaluation of biophysical properties of tissue-engineered cartilage by using quantitative MRI.
    Miyata S; Numano T; Homma K; Tateishi T; Ushida T
    J Biomech; 2007; 40(13):2990-8. PubMed ID: 17442320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time monitoring of force response measured in mechanically stimulated tissue-engineered cartilage.
    Preiss-Bloom O; Mizrahi J; Elisseeff J; Seliktar D
    Artif Organs; 2009 Apr; 33(4):318-27. PubMed ID: 19335408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical stimulation of tendon tissue engineered constructs: effects on construct stiffness, repair biomechanics, and their correlation.
    Shearn JT; Juncosa-Melvin N; Boivin GP; Galloway MT; Goodwin W; Gooch C; Dunn MG; Butler DL
    J Biomech Eng; 2007 Dec; 129(6):848-54. PubMed ID: 18067388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pediatric auricular chondrocytes gene expression analysis in monolayer culture and engineered elastic cartilage.
    Ruszymah BH; Lokman BS; Asma A; Munirah S; Chua K; Mazlyzam AL; Isa MR; Fuzina NH; Aminuddin BS
    Int J Pediatr Otorhinolaryngol; 2007 Aug; 71(8):1225-34. PubMed ID: 17531328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes.
    Kusuhara H; Isogai N; Enjo M; Otani H; Ikada Y; Jacquet R; Lowder E; Landis WJ
    Wound Repair Regen; 2009; 17(1):136-46. PubMed ID: 19152661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling.
    Malda J; Rouwkema J; Martens DE; Le Comte EP; Kooy FK; Tramper J; van Blitterswijk CA; Riesle J
    Biotechnol Bioeng; 2004 Apr; 86(1):9-18. PubMed ID: 15007836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling costal cartilage using local material properties with consideration for gross heterogeneities.
    Forman JL; Kent RW
    J Biomech; 2011 Mar; 44(5):910-6. PubMed ID: 21168845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validating the subcutaneous model of injectable autologous cartilage using a fibrin glue scaffold.
    Westreich R; Kaufman M; Gannon P; Lawson W
    Laryngoscope; 2004 Dec; 114(12):2154-60. PubMed ID: 15564836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtia chondrocytes as a donor source for tissue-engineered cartilage.
    Kamil SH; Vacanti MP; Vacanti CA; Eavey RD
    Laryngoscope; 2004 Dec; 114(12):2187-90. PubMed ID: 15564842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cartilage engineering from ovine umbilical cord blood mesenchymal progenitor cells.
    Fuchs JR; Hannouche D; Terada S; Zand S; Vacanti JP; Fauza DO
    Stem Cells; 2005 Aug; 23(7):958-64. PubMed ID: 16043460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of the perichondrium to the structural mechanical behavior of the costal-cartilage.
    Forman JL; del Pozo de Dios E; Dalmases CA; Kent RW
    J Biomech Eng; 2010 Sep; 132(9):094501. PubMed ID: 20815649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of mechanical properties of insulin crystals by atomic force microscopy.
    Guo S; Akhremitchev BB
    Langmuir; 2008 Feb; 24(3):880-7. PubMed ID: 18163652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autologous injectable tissue-engineered cartilage by using platelet-rich plasma: experimental study in a rabbit model.
    Wu W; Chen F; Liu Y; Ma Q; Mao T
    J Oral Maxillofac Surg; 2007 Oct; 65(10):1951-7. PubMed ID: 17884521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(vinyl alcohol) hydrogel as a biocompatible viscoelastic mimetic for articular cartilage.
    Grant C; Twigg P; Egan A; Moody A; Smith A; Eagland D; Crowther N; Britland S
    Biotechnol Prog; 2006; 22(5):1400-6. PubMed ID: 17022680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical assessment of tissue retrieved after in vivo cartilage defect repair: tensile modulus of repair tissue and integration with host cartilage.
    Gratz KR; Wong VW; Chen AC; Fortier LA; Nixon AJ; Sah RL
    J Biomech; 2006; 39(1):138-46. PubMed ID: 16271598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the mechanics of tissue-engineered human heart valve leaflets.
    Driessen NJ; Mol A; Bouten CV; Baaijens FP
    J Biomech; 2007; 40(2):325-34. PubMed ID: 16529755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.