BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 14986315)

  • 21. Development of mature cartilage constructs using novel three-dimensional porous scaffolds for enhanced repair of osteochondral defects.
    Kasahara Y; Iwasaki N; Yamane S; Igarashi T; Majima T; Nonaka S; Harada K; Nishimura S; Minami A
    J Biomed Mater Res A; 2008 Jul; 86(1):127-36. PubMed ID: 17957716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage.
    Klein TJ; Chaudhry M; Bae WC; Sah RL
    J Biomech; 2007; 40(1):182-90. PubMed ID: 16387310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage: a combined experimental and finite element approach.
    Gupta S; Lin J; Ashby P; Pruitt L
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):326-37; discussion 337-8. PubMed ID: 19627839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Review: auricular chondrocytes - from benchwork to clinical applications.
    Nabzdyk C; Pradhan L; Molina J; Perin E; Paniagua D; Rosenstrauch D
    In Vivo; 2009; 23(3):369-80. PubMed ID: 19454501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical stimulation of tissue engineered tendon constructs: effect of scaffold materials.
    Nirmalanandhan VS; Dressler MR; Shearn JT; Juncosa-Melvin N; Rao M; Gooch C; Bradica G; Butler DL
    J Biomech Eng; 2007 Dec; 129(6):919-23. PubMed ID: 18067397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The tissue-engineered auricle: past, present, and future.
    Bichara DA; O'Sullivan NA; Pomerantseva I; Zhao X; Sundback CA; Vacanti JP; Randolph MA
    Tissue Eng Part B Rev; 2012 Feb; 18(1):51-61. PubMed ID: 21827281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.
    Han SK; Federico S; Grillo A; Giaquinta G; Herzog W
    Biomech Model Mechanobiol; 2007 Apr; 6(3):139-50. PubMed ID: 16506020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micromechanical bending of single collagen fibrils using atomic force microscopy.
    Yang L; van der Werf KO; Koopman BF; Subramaniam V; Bennink ML; Dijkstra PJ; Feijen J
    J Biomed Mater Res A; 2007 Jul; 82(1):160-8. PubMed ID: 17269147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of indenter size on elastic modulus of cartilage measured by indentation.
    Simha NK; Jin H; Hall ML; Chiravarambath S; Lewis JL
    J Biomech Eng; 2007 Oct; 129(5):767-75. PubMed ID: 17887903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fibrin glue mixed with gelatin/hyaluronic acid/chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering: the results of real-time polymerase chain reaction.
    Chou CH; Cheng WT; Kuo TF; Sun JS; Lin FH; Tsai JC
    J Biomed Mater Res A; 2007 Sep; 82(3):757-67. PubMed ID: 17326136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexural properties of native and tissue-engineered human septal cartilage.
    Caffrey JP; Kushnaryov AM; Reuther MS; Wong VW; Briggs KK; Masuda K; Sah RL; Watson D
    Otolaryngol Head Neck Surg; 2013 Apr; 148(4):576-81. PubMed ID: 23322630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of single-phase isotropic elastic and fibril-reinforced poroelastic models for indentation of rabbit articular cartilage.
    Julkunen P; Harjula T; Marjanen J; Helminen HJ; Jurvelin JS
    J Biomech; 2009 Mar; 42(5):652-6. PubMed ID: 19193381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship between physical, biochemical and biomechanical properties of tissue-engineered cartilage-carrier-constructs.
    Nagel-Heyer S; Goepfert C; Morlock MM; Pörtner R
    Biotechnol Lett; 2005 Feb; 27(3):187-92. PubMed ID: 15717128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical characterization of native and tissue-engineered cartilage.
    Chen AC; Klisch SM; Bae WC; Temple MM; McGowan KB; Gratz KR; Schumacher BL; Sah RL
    Methods Mol Med; 2004; 101():157-90. PubMed ID: 15299215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of auricular chondrocytes for lining artificial surfaces: a mathematical model.
    Canić S; Rosenstrauch D
    IEEE Trans Nanobioscience; 2008 Sep; 7(3):240-5. PubMed ID: 18779105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical evaluation of human and porcine auricular cartilage.
    Zopf DA; Flanagan CL; Nasser HB; Mitsak AG; Huq FS; Rajendran V; Green GE; Hollister SJ
    Laryngoscope; 2015 Aug; 125(8):E262-8. PubMed ID: 25891012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compressive properties of cartilage-like tissues repaired in vivo with scaffold-free, tissue engineered constructs.
    Katakai D; Imura M; Ando W; Tateishi K; Yoshikawa H; Nakamura N; Fujie H
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):110-6. PubMed ID: 18990475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits.
    Wang Y; Bian YZ; Wu Q; Chen GQ
    Biomaterials; 2008 Jul; 29(19):2858-68. PubMed ID: 18406457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Regeneration of autologous tissue-engineered cartilage by using basic-fibroblast growth factor in vitro culture].
    Ding XB; Cheng NX; Chen B; Xia WY; Cui L; Liu W; Cao YL
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2004 May; 20(3):215-8. PubMed ID: 15449626
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.