These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 14986315)

  • 41. Subcutaneous implants coated with tissue-engineered cartilage.
    Kim SW; Dobratz EJ; Ballert JA; Voglewede AT; Park SS
    Laryngoscope; 2009 Jan; 119(1):62-6. PubMed ID: 19117288
    [TBL] [Abstract][Full Text] [Related]  

  • 42. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional tissue engineering of chondral and osteochondral constructs.
    Lima EG; Mauck RL; Han SH; Park S; Ng KW; Ateshian GA; Hung CT
    Biorheology; 2004; 41(3-4):577-90. PubMed ID: 15299288
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomechanical and biotribological correlation of induced wear on bovine femoral condyles.
    Shields KJ; Owen JR; Wayne JS
    J Biomech Eng; 2009 Jun; 131(6):061005. PubMed ID: 19449959
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stress relaxation behavior of mandibular condylar cartilage under high-strain compression.
    Singh M; Detamore MS
    J Biomech Eng; 2009 Jun; 131(6):061008. PubMed ID: 19449962
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Producing a flexible tissue-engineered cartilage framework using expanded polytetrafluoroethylene membrane as a pseudoperichondrium.
    Jian-Wei X; Randolph MA; Peretti GM; Nazzal JA; Roses RE; Morse KR; Yaremchuk MJ
    Plast Reconstr Surg; 2005 Aug; 116(2):577-89. PubMed ID: 16079694
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of flexural and membrane stress analysis to distinguish tensile and compressive moduli of biologic materials.
    Kohles SS
    J Mech Behav Biomed Mater; 2021 Jul; 119():104474. PubMed ID: 33887626
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Contribution of perichondrium to the mechanical properties of auricular cartilage.
    Sun H; Zhou J; Wang Q; Jiang H; Yang Q
    J Biomech; 2021 Sep; 126():110638. PubMed ID: 34314997
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Winkler boundary conditions for three-point bending tests on 1D nanomaterials.
    Gangadean D; McIlroy DN; Faulkner BE; Aston DE
    Nanotechnology; 2010 Jun; 21(22):225704. PubMed ID: 20453278
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanical and biochemical mapping of human auricular cartilage for reliable assessment of tissue-engineered constructs.
    Nimeskern L; Pleumeekers MM; Pawson DJ; Koevoet WL; Lehtoviita I; Soyka MB; Röösli C; Holzmann D; van Osch GJ; Müller R; Stok KS
    J Biomech; 2015 Jul; 48(10):1721-9. PubMed ID: 26065333
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Morphology and Bending Behavior of Regenerated Costal Cartilage with Kawanabe-Nagata Method in Rabbits - the Short Term Result of an Experimental Study.
    Han J; Cuomo R; Zhao Y; Pan B; Yang Q
    J Invest Surg; 2021 Oct; 34(10):1047-1051. PubMed ID: 32281444
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Viability and Biomechanics of Bare Diced Cartilage Grafts in Experimental Study.
    Liao JL; Chen J; Xu JQ; Cheng Y; Xie HJ; He G; He B; Cao K; Xie HQ; Zhou JD
    J Craniofac Surg; 2017 Sep; 28(6):1445-1450. PubMed ID: 28277476
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanical analysis of cartilage graft reinforced with PDS plate.
    Conderman C; Kinzinger M; Manuel C; Protsenko D; Wong BJ
    Laryngoscope; 2013 Feb; 123(2):339-43. PubMed ID: 22965809
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparisons of Auricular Cartilage Tissues from Different Species.
    Chiu LLY; Giardini-Rosa R; Weber JF; Cushing SL; Waldman SD
    Ann Otol Rhinol Laryngol; 2017 Dec; 126(12):819-828. PubMed ID: 29078705
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Micromechanical modeling of calcifying human costal cartilage using the generalized method of cells.
    Lau AG; Kindig MW; Salzar RS; Kent RW
    Acta Biomater; 2015 May; 18():226-35. PubMed ID: 25712387
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Material properties and strain distribution patterns of bovine growth plate cartilage vary with anatomic location and depth.
    Fischenich KM; Schneider SE; Neu CP; Payne KA; Ferguson VL
    J Biomech; 2022 Mar; 134():111013. PubMed ID: 35245713
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Importance of nasal septal cartilage perichondrium for septum strength mechanics: a cadaveric study.
    Tekke NS; Alkan Z; Yigit O; Bekem A; Unal A; Sahin F; Balikci HH; Acioglu E; Durna YM
    Rhinology; 2014 Jun; 52(2):167-71. PubMed ID: 24932630
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [The biomechanics of hyaline cartilage under distension stress].
    Hartung C; Arnold G; Gross F
    Acta Anat (Basel); 1975; 91(4):583-93. PubMed ID: 50705
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative equilibrium mechanical properties of bovine and lamprey cartilaginous tissues.
    Courtland HW; Wright GM; Root RG; DeMont ME
    J Exp Biol; 2003 Apr; 206(Pt 8):1397-408. PubMed ID: 12624174
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tensile and compression properties of hydrophilic composite materials on a simple model of cartilage. II.
    Flam E; Kapfer WH; Brenner W; Schubert M
    J Biomed Mater Res; 1970 Mar; 4(1):107-19. PubMed ID: 5434808
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.