These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 14986418)

  • 1. Blood flow in small curved tubes.
    Wang CY; Bassingthwaighte JB
    J Biomech Eng; 2003 Dec; 125(6):910-3. PubMed ID: 14986418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transport of nanoparticles in blood vessels: the effect of vessel permeability and blood rheology.
    Gentile F; Ferrari M; Decuzzi P
    Ann Biomed Eng; 2008 Feb; 36(2):254-61. PubMed ID: 18172768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fluid shear stress distribution on the membrane of leukocytes in the microcirculation.
    Sugihara-Seki M; Schmid-Schönbein GW
    J Biomech Eng; 2003 Oct; 125(5):628-38. PubMed ID: 14618922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing steady laminar flow through uniform straight tubes with varying wall cross curvature.
    Naili S; Thiriet M; Ribreau C
    Comput Methods Biomech Biomed Engin; 2004 Dec; 7(6):319-30. PubMed ID: 15621652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational study of fluid mechanical disturbance induced by endovascular stents.
    Seo T; Schachter LG; Barakat AI
    Ann Biomed Eng; 2005 Apr; 33(4):444-56. PubMed ID: 15909650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Newtonian blood flow in human right coronary arteries: steady state simulations.
    Johnston BM; Johnston PR; Corney S; Kilpatrick D
    J Biomech; 2004 May; 37(5):709-20. PubMed ID: 15047000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-layered model of Casson fluid flow through stenotic blood vessels: applications to the cardiovascular system.
    Srivastava VP; Saxena M
    J Biomech; 1994 Jul; 27(7):921-8. PubMed ID: 8063842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An inverse problem for the motion of blood in small vessels.
    Munteanu L; Donescu S; Chiroiu V
    Physiol Meas; 2006 Sep; 27(9):865-80. PubMed ID: 16868352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A one-dimensional viscous-inviscid strong interaction model for flow in indented channels with separation and reattachment.
    Kalse SG; Bijl H; van Oudheusden BW
    J Biomech Eng; 2003 Jun; 125(3):355-62. PubMed ID: 12929240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopic velocimetry with a scaled-up model for evaluating a flow field over cultured endothelial cells.
    Fukushima S; Deguchi T; Kaibara M; Oka K; Tanishita K
    J Biomech Eng; 2002 Apr; 124(2):176-9. PubMed ID: 12002126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.
    Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of varying viscosity on two-fluid model of pulsatile blood flow through porous blood vessels: A comparative study.
    Tiwari A; Chauhan SS
    Microvasc Res; 2019 May; 123():99-110. PubMed ID: 30639139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.
    Ramiar A; Larimi MM; Ranjbar AA
    Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On using experimentally estimated wall shear stresses to validate numerically predicted results.
    Walsh M; McGloughlin T; Liepsch DW; O'Brien T; Morris L; Ansari AR
    Proc Inst Mech Eng H; 2003; 217(2):77-90. PubMed ID: 12666774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of hematocrit and leukocyte adherence on flow direction in the microcirculation.
    King MR; Bansal D; Kim MB; Sarelius IH
    Ann Biomed Eng; 2004 Jun; 32(6):803-14. PubMed ID: 15255211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation.
    Ottesen JT
    J Math Biol; 2003 Apr; 46(4):309-32. PubMed ID: 12673509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-free layer and wall shear stress variation in microvessels.
    Yin X; Zhang J
    Biorheology; 2012; 49(4):261-70. PubMed ID: 22836080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for matching the refractive index and kinematic viscosity of a blood analog for flow visualization in hydraulic cardiovascular models.
    Nguyen TT; Biadillah Y; Mongrain R; Brunette J; Tardif JC; Bertrand OF
    J Biomech Eng; 2004 Aug; 126(4):529-35. PubMed ID: 15543873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.