These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 14987002)
41. A theoretical study of the mechanisms and regiochemistry of the reactions of 5-alkoxyoxazole with thioaldehydes, nitroso compounds, and aldehydes. Yu ZX; Wu YD J Org Chem; 2003 Jan; 68(2):412-20. PubMed ID: 12530867 [TBL] [Abstract][Full Text] [Related]
42. Novel synthesis and properties of 1,6-methanocycloundeca[b]pyrimido[5,4-d]pyrrole-12,14-dione derivatives: autorecycling oxidation of some amines and alcohols. Mitsumoto Y; Nitta M J Org Chem; 2004 Feb; 69(4):1256-61. PubMed ID: 14961678 [TBL] [Abstract][Full Text] [Related]
43. Mechanism of the oxidation of alcohols by oxoammonium cations. Bailey WF; Bobbitt JM; Wiberg KB J Org Chem; 2007 Jun; 72(12):4504-9. PubMed ID: 17488040 [TBL] [Abstract][Full Text] [Related]
44. Mechanistic aspects of the formation of aldehydes and nitriles in photosensitized reactions of aldoxime ethers. de Lijser HJ; Rangel NA; Tetalman MA; Tsai CK J Org Chem; 2007 May; 72(11):4126-34. PubMed ID: 17477578 [TBL] [Abstract][Full Text] [Related]
45. Thermodynamic and ab initio analysis of the controversial enthalpy of formation of formaldehyde. da Silva G; Bozzelli JW; Sebbar N; Bockhorn H Chemphyschem; 2006 May; 7(5):1119-26. PubMed ID: 16596698 [TBL] [Abstract][Full Text] [Related]
46. The reaction of tricarbon with acetylene: an ab initio/RRKM study of the potential energy surface and product branching ratios. Mebel AM; Kim GS; Kislov VV; Kaiser RI J Phys Chem A; 2007 Jul; 111(29):6704-12. PubMed ID: 17391012 [TBL] [Abstract][Full Text] [Related]
48. The construction of novel and efficient hafnium catalysts using naturally existing tannic acid for Meerwein-Ponndorf-Verley reduction. Wang X; Hao J; Deng L; Zhao H; Liu Q; Li N; He R; Zhi K; Zhou H RSC Adv; 2020 Feb; 10(12):6944-6952. PubMed ID: 35493886 [TBL] [Abstract][Full Text] [Related]
49. TEMPO/HCl/NaNO2 catalyst: a transition-metal-free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones under mild conditions. Wang X; Liu R; Jin Y; Liang X Chemistry; 2008; 14(9):2679-85. PubMed ID: 18293352 [TBL] [Abstract][Full Text] [Related]
50. Thermochemical properties, DeltafH degrees (298), S degrees (298), and Cp degrees (T), for n-butyl and n-pentyl hydroperoxides and the alkyl and peroxy radicals, transition states, and kinetics for intramolecular hydrogen shift reactions of the peroxy radicals. Zhu L; Bozzelli JW; Kardos LM J Phys Chem A; 2007 Jul; 111(28):6361-77. PubMed ID: 17585739 [TBL] [Abstract][Full Text] [Related]
51. Carboxyketenes, methyleneketenes, vinylketenes, oxetanediones, ynols, and ylidic ketenes from Meldrum's acid derivatives. George L; Wong MW; Wentrup C Org Biomol Chem; 2007 May; 5(9):1437-41. PubMed ID: 17464413 [TBL] [Abstract][Full Text] [Related]
52. Iridium-catalyzed Oppenauer oxidations of primary alcohols using acetone or 2-butanone as oxidant. Suzuki T; Morita K; Tsuchida M; Hiroi K J Org Chem; 2003 Feb; 68(4):1601-2. PubMed ID: 12585915 [TBL] [Abstract][Full Text] [Related]
53. Novel polyaniline-supported molybdenum-catalyzed aerobic oxidation of alcohols to aldehydes and ketones. Velusamy S; Ahamed M; Punniyamurthy T Org Lett; 2004 Dec; 6(26):4821-4. PubMed ID: 15606075 [TBL] [Abstract][Full Text] [Related]
54. The formation of naphthalene, azulene, and fulvalene from cyclic C5 species in combustion: an ab initio/RRKM study of 9-H-fulvalenyl (C5H5-C5H4) radical rearrangements. Kislov VV; Mebel AM J Phys Chem A; 2007 Sep; 111(38):9532-43. PubMed ID: 17711267 [TBL] [Abstract][Full Text] [Related]
55. An ab initio study on thermal rearrangement reactions of 1-silylprop-2-en-1-ol H3SiCH(OH)CH=CH2. Yu Y; Feng S; Feng D J Phys Chem A; 2005 Apr; 109(16):3663-8. PubMed ID: 16839032 [TBL] [Abstract][Full Text] [Related]
56. Al-free Zr-zeolite beta as a regioselective catalyst in the Meerwein-Ponndorf-Verley reaction. Zhu Y; Chuah G; Jaenicke S Chem Commun (Camb); 2003 Nov; (21):2734-5. PubMed ID: 14649835 [TBL] [Abstract][Full Text] [Related]
57. The domino multicomponent allylation reaction for the stereoselective synthesis of homoallylic alcohols. Tietze LF; Kinzel T; Brazel CC Acc Chem Res; 2009 Feb; 42(2):367-78. PubMed ID: 19154154 [TBL] [Abstract][Full Text] [Related]
58. Enthalpies of formation, bond dissociation energies, and molecular structures of the n-aldehydes (acetaldehyde, propanal, butanal, pentanal, hexanal, and heptanal) and their radicals. da Silva G; Bozzelli JW J Phys Chem A; 2006 Dec; 110(48):13058-67. PubMed ID: 17134166 [TBL] [Abstract][Full Text] [Related]
59. Energy barriers for the addition of H, *CH3, and *C2H5 to *CH2=CHX [X = H, CH3, OH] and for H-atom addition to RCH=O [R = H, CH3, *C2H5, n-C3H7]: implications for the gas-phase chemistry of enols. Simmie JM; Curran HJ J Phys Chem A; 2009 Jul; 113(27):7834-45. PubMed ID: 19518123 [TBL] [Abstract][Full Text] [Related]
60. Mechanism of formation of organic carbonates from aliphatic alcohols and carbon dioxide under mild conditions promoted by carbodiimides. DFT calculation and experimental study. Aresta M; Dibenedetto A; Fracchiolla E; Giannoccaro P; Pastore C; Pápai I; Schubert G J Org Chem; 2005 Aug; 70(16):6177-86. PubMed ID: 16050675 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]