These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1498721)

  • 1. Cerebral vascular changes associated with hemorrhagic stroke in hypertension.
    Smeda JS
    Can J Physiol Pharmacol; 1992 Apr; 70(4):552-64. PubMed ID: 1498721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemorrhagic stroke development in spontaneously hypertensive rats fed a North American, Japanese-style diet.
    Smeda JS
    Stroke; 1989 Sep; 20(9):1212-8. PubMed ID: 2772982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stroke-prone spontaneously hypertensive rats lose their ability to auto-regulate cerebral blood flow prior to stroke.
    Smeda JS; VanVliet BN; King SR
    J Hypertens; 1999 Dec; 17(12 Pt 1):1697-705. PubMed ID: 10658935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal function in stroke-prone rats fed a high-K+ diet.
    Smeda JS
    Can J Physiol Pharmacol; 1997 Jul; 75(7):796-806. PubMed ID: 9315346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perindopril treatment in the prevention of stroke in experimental animals.
    Lee RM; Wang H; Smeda JS
    J Hypertens Suppl; 1996 Dec; 14(6):S29-33. PubMed ID: 9023713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Captopril treatment temporarily restores cerebral blood flow autoregulation in spontaneously hypertensive rats after hemorrhagic stroke.
    Davis LA; Smeda JS
    J Cardiovasc Pharmacol; 2010 Sep; 56(3):255-62. PubMed ID: 20531216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in the modulation of cerebrovascular tone and blood flow by nitric oxide synthases in SHRsp with stroke.
    Daneshtalab N; Smeda JS
    Cardiovasc Res; 2010 Apr; 86(1):160-8. PubMed ID: 20008826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical conduction within the cerebrovasculature of stroke-prone spontaneously hypertensive rats.
    Smeda JS; King SR
    Can J Physiol Pharmacol; 1998 Feb; 76(2):194-201. PubMed ID: 9635160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stroke development in stroke-prone spontaneously hypertensive rats alters the ability of cerebrovascular muscle to utilize internal Ca2+ to elicit constriction.
    Smeda JS
    Stroke; 2003 Jun; 34(6):1491-6. PubMed ID: 12750542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of diuretics on stroke development in Kyoto-Wistar stroke-prone spontaneously hypertensive rats.
    Smeda JS; Tkachenko O
    Clin Sci (Lond); 1991 Sep; 81(3):335-40. PubMed ID: 1655334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chronic hypertension and sympathetic nerves on the cerebral microvasculature of stroke-prone spontaneously hypertensive rats.
    Werber AH; Heistad DD
    Circ Res; 1984 Sep; 55(3):286-94. PubMed ID: 6467525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypertension transmitted by kidneys from stroke-prone spontaneously hypertensive rats.
    Rettig R; Stauss H; Folberth C; Ganten D; Waldherr B; Unger T
    Am J Physiol; 1989 Aug; 257(2 Pt 2):F197-203. PubMed ID: 2669526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of antihypertensive treatment on myogenic properties of brain arteries from the stroke-prone rat.
    Osol G; Halpern W
    J Hypertens Suppl; 1986 Oct; 4(3):S517-8. PubMed ID: 3023593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in autoregulatory and myogenic function in the cerebrovasculature of Dahl salt-sensitive rats.
    Smeda JS; Payne GW
    Stroke; 2003 Jun; 34(6):1484-90. PubMed ID: 12750541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dorsal cerebral collaterals of stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar Kyoto rats (WKY).
    Coyle P
    Anat Rec; 1987 May; 218(1):40-4. PubMed ID: 3605659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevention of stroke and preservation of the functions of cerebral arteries by treatment with perindopril in stroke-prone spontaneously hypertensive rats.
    Wang H; Smeda JS; Lee RM
    Can J Physiol Pharmacol; 1998 Jan; 76(1):26-34. PubMed ID: 9564546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebrovascular alterations in protein kinase C-mediated constriction in stroke-prone rats.
    Smeda JS; King S
    Stroke; 1999 Mar; 30(3):656-61. PubMed ID: 10066867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of cerebrovascular sympathetic nerve density in relation to stroke development in spontaneously hypertensive rats.
    Smeda JS
    Stroke; 1990 May; 21(5):785-9. PubMed ID: 2339459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural remodeling of resistance arteries in uremic hypertension.
    New DI; Chesser AM; Thuraisingham RC; Yaqoob MM
    Kidney Int; 2004 May; 65(5):1818-25. PubMed ID: 15086922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myogenic properties of cerebral blood vessels from normotensive and hypertensive rats.
    Osol G; Halpern W
    Am J Physiol; 1985 Nov; 249(5 Pt 2):H914-21. PubMed ID: 4061668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.