These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 14987596)

  • 1. Analysis of multi-exponential relaxation data with very short components using linear regularization.
    Moody JB; Xia Y
    J Magn Reson; 2004 Mar; 167(1):36-41. PubMed ID: 14987596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simulation based method to assess inversion algorithms for transverse relaxation data.
    Ghosh S; Keener KM; Pan Y
    J Magn Reson; 2008 Apr; 191(2):226-30. PubMed ID: 18221903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uniform-penalty inversion of multiexponential decay data. II. Data spacing, T(2) data, systemic data errors, and diagnostics.
    Borgia GC; Brown RJ; Fantazzini P
    J Magn Reson; 2000 Dec; 147(2):273-85. PubMed ID: 11097819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T2 measurement in articular cartilage: impact of the fitting method on accuracy and precision at low SNR.
    Raya JG; Dietrich O; Horng A; Weber J; Reiser MF; Glaser C
    Magn Reson Med; 2010 Jan; 63(1):181-93. PubMed ID: 19859960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of Rician noise in the analysis of biexponential transverse relaxation in cartilage using a multiple gradient echo sequence at 3 and 7 Tesla.
    Bouhrara M; Reiter DA; Celik H; Bonny JM; Lukas V; Fishbein KW; Spencer RG
    Magn Reson Med; 2015 Jan; 73(1):352-66. PubMed ID: 24677270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise robust spatially regularized myelin water fraction mapping with the intrinsic B1-error correction based on the linearized version of the extended phase graph model.
    Kumar D; Siemonsen S; Heesen C; Fiehler J; Sedlacik J
    J Magn Reson Imaging; 2016 Apr; 43(4):800-17. PubMed ID: 26477610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous T2 relaxation in normal and degraded cartilage.
    Reiter DA; Magin RL; Li W; Trujillo JJ; Pilar Velasco M; Spencer RG
    Magn Reson Med; 2016 Sep; 76(3):953-62. PubMed ID: 26336966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MRICOM-MRI COntrast Modelling using 2D T1-T2 correlation spectra and relaxation signatures.
    Wright KM; Warner J; Venturi L; Piggott RB; Donell S; Hills BP
    Magn Reson Imaging; 2010 Jun; 28(5):661-8. PubMed ID: 20378295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo bone and cartilage MRI using fully-balanced steady-state free-precession at 7 tesla.
    Krug R; Carballido-Gamio J; Banerjee S; Stahl R; Carvajal L; Xu D; Vigneron D; Kelley DA; Link TM; Majumdar S
    Magn Reson Med; 2007 Dec; 58(6):1294-8. PubMed ID: 17957777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regression error estimation significantly improves the region-of-interest statistics of noisy MR images.
    Juras V; Zbýn S; Szomolanyi P; Trattnig S
    Med Phys; 2010 Jun; 37(6):2813-21. PubMed ID: 20632592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative T2 analysis: the effects of noise, regularization, and multivoxel approaches.
    Bjarnason TA; McCreary CR; Dunn JF; Mitchell JR
    Magn Reson Med; 2010 Jan; 63(1):212-7. PubMed ID: 20027599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying uncertainty in NMR T2 spectra using Monte Carlo inversion.
    Prange M; Song YQ
    J Magn Reson; 2009 Jan; 196(1):54-60. PubMed ID: 18952474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of the Krylov subspace regularization for microwave biomedical imaging.
    Mojabi P; LoVetri J
    IEEE Trans Med Imaging; 2009 Dec; 28(12):2015-9. PubMed ID: 19635692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaussian signal relaxation around spin echoes: Implications for precise reversible transverse relaxation quantification of pulmonary tissue at 1.5 and 3 Tesla.
    Zapp J; Domsch S; Weingärtner S; Schad LR
    Magn Reson Med; 2017 May; 77(5):1938-1945. PubMed ID: 27343149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring water content using T2 relaxation at 3T: Phantom validations and simulations.
    Meyers SM; Kolind SH; Laule C; MacKay AL
    Magn Reson Imaging; 2016 Apr; 34(3):246-51. PubMed ID: 26657977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved watershed transform for medical image segmentation using prior information.
    Grau V; Mewes AU; Alcañiz M; Kikinis R; Warfield SK
    IEEE Trans Med Imaging; 2004 Apr; 23(4):447-58. PubMed ID: 15084070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial variation of T2 relaxation times of patellar cartilage and physeal patency: an in vivo study in children and young adults.
    Shiraj S; Kim HK; Anton C; Horn PS; Laor T
    AJR Am J Roentgenol; 2014 Mar; 202(3):W292-7. PubMed ID: 24555628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into the mechanisms of signal formation in RF-spoiled gradient echo sequences.
    Denolin V; Azizieh C; Metens T
    Magn Reson Med; 2005 Oct; 54(4):937-54. PubMed ID: 16155898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood oxygen level-dependent magnetic resonance imaging of the kidneys: influence of spatial resolution on the apparent R2* transverse relaxation rate of renal tissue.
    Rossi C; Sharma P; Pazahr S; Alkadhi H; Nanz D; Boss A
    Invest Radiol; 2013 Sep; 48(9):671-7. PubMed ID: 23571833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional balanced steady state free precession imaging of the prostate: flip angle dependency of the signal based on a two component T2-decay model.
    Storås TH; Gjesdal KI; Gadmar OB; Geitung JT; Kløw NE
    J Magn Reson Imaging; 2010 May; 31(5):1124-31. PubMed ID: 20432347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.