These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 14987706)

  • 1. Determination of self-absorption corrections for gamma analysis of environmental samples: comparing gamma-absorption curves and spiked matrix-matched samples.
    McMahon CA; Fegan MF; Wong J; Long SC; Ryan TP; Colgan PA
    Appl Radiat Isot; 2004; 60(2-4):571-7. PubMed ID: 14987706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A semi-empirical approach for determination of low-energy gamma-emmiters in sediment samples with coaxial Ge-detectors.
    San Miguel EG; Perez-Moreno JP; Bolivar JP; García-Tenorio R
    Appl Radiat Isot; 2004; 61(2-3):361-6. PubMed ID: 15177372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method to determine 238U activity in environmental soil samples by using 63.3-keV-photopeak-gamma HPGe spectrometer.
    Huy NQ; Luyen TV
    Appl Radiat Isot; 2004 Dec; 61(6):1419-24. PubMed ID: 15388142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-absorption correction for beta radioactivity measurements in water samples.
    Pujol L; Suarez-Navarro JA
    Appl Radiat Isot; 2004 May; 60(5):693-702. PubMed ID: 15082049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gamma-ray spectrometry of radon in water and the role of radon to representatively sample aquifers.
    Talha SA; Lindsay R; Newman RT; de Meijer RJ; Maleka PP; Hlatshwayo IN; Mlwilo NA; Mohanty AK
    Appl Radiat Isot; 2008 Nov; 66(11):1623-6. PubMed ID: 18515121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo determination of water concentration effect on gamma-ray detection efficiency in soil samples.
    Celik N; Cevik U
    Appl Radiat Isot; 2010 Jun; 68(6):1150-3. PubMed ID: 20133141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of depleted uranium in environmental samples by gamma-spectroscopic techniques.
    Karangelos DJ; Anagnostakis MJ; Hinis EP; Simopoulos SE; Zunic ZS
    J Environ Radioact; 2004; 76(3):295-310. PubMed ID: 15261418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of NaI(Tl) detector for measurement of natural radionuclides and (137)Cs in environmental samples: new approach by decomposition of measured spectrum.
    Muminov IT; Muhamedov AK; Osmanov BS; Safarov AA; Safarov AN
    J Environ Radioact; 2005; 84(3):321-31. PubMed ID: 16009470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proficiency test of gamma spectrometry laboratories in Serbia.
    Pantelić G; Vuletić V; Mitrović R
    Appl Radiat Isot; 2010; 68(7-8):1270-2. PubMed ID: 19945291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards establishing traceability of results measured in specific counting conditions in gamma-ray spectrometry.
    Glavic-Cindro D; Korun M
    Appl Radiat Isot; 2004; 60(2-4):217-20. PubMed ID: 14987646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for the comparison of performance of gamma-ray spectrometry calibration cocktails.
    Legarda F; Los Arcos JM; Herranz M
    Appl Radiat Isot; 2004; 60(2-4):547-51. PubMed ID: 14987701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High accuracy in situ radiometric mapping.
    Tyler AN
    J Environ Radioact; 2004; 72(1-2):195-202. PubMed ID: 15162872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the composition of standard reference material on the accuracy of determinations of 210Pb and 137Cs in soils with gamma spectrometry.
    Li Y; Geng XC; Yu HQ; Wan GJ
    Appl Radiat Isot; 2011 Feb; 69(2):516-20. PubMed ID: 21071235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and application of Marinelli beaker standards for monitoring radioactivity in Dairy-Products by gamma-ray spectrometry.
    Lavi N; Alfassi ZB
    Appl Radiat Isot; 2004 Dec; 61(6):1437-41. PubMed ID: 15388145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerial measurements of artificial radionuclides in Germany in case of a nuclear accident.
    Winkelmann I; Strobl C; Thomas M
    J Environ Radioact; 2004; 72(1-2):225-31. PubMed ID: 15162875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of photon attenuation coefficient, porosity and field capacity of soil by gamma-ray transmission for 60, 356 and 662 keV gamma rays.
    Demir D; Un A; Ozgül M; Sahin Y
    Appl Radiat Isot; 2008 Dec; 66(12):1834-7. PubMed ID: 18554919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of source chemical composition on the self-attenuation corrections for low-energy gamma-rays in soil samples.
    Carrazana González J; Cornejo Díaz N; Jurado Vargas M; Capote Ferrera E
    Appl Radiat Isot; 2010 Feb; 68(2):360-3. PubMed ID: 19897375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of peak and total efficiencies of low-energy gamma-ray detectors with sources emitting photons in cascade.
    Korun M
    Appl Radiat Isot; 2004; 60(2-4):207-11. PubMed ID: 14987644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid method to compute accurate efficiencies for volume samples in gamma-ray spectrometry.
    García-Talavera M; Peña V
    Appl Radiat Isot; 2004; 60(2-4):227-32. PubMed ID: 14987648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A numerical method for the calibration of in situ gamma ray spectroscopy systems.
    Dewey SC; Whetstone ZD; Kearfott KJ
    Health Phys; 2010 May; 98(5):657-71. PubMed ID: 20386196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.