BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 14987947)

  • 1. Degradation of the antifouling compound Irgarol 1051 by manganese peroxidase from the white rot fungus Phanerochaete chrysosporium.
    Ogawa N; Okamura H; Hirai H; Nishida T
    Chemosphere; 2004 Apr; 55(3):487-91. PubMed ID: 14987947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosensitized degradation of Irgarol 1051 in water.
    Okamura H; Sugiyama Y
    Chemosphere; 2004 Nov; 57(7):739-43. PubMed ID: 15488937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mechanistic study on the photodegradation of Irgarol-1051 in natural seawater.
    Lam KH; Lei NY; Tsang VW; Cai Z; Leung KM; Lam MH
    Mar Pollut Bull; 2009 Feb; 58(2):272-9. PubMed ID: 18977497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium.
    Wen X; Jia Y; Li J
    J Hazard Mater; 2010 May; 177(1-3):924-8. PubMed ID: 20117880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of axial ligands in the reactivity of Mn peroxidase from Phanerochaete chrysosporium.
    Whitwam RE; Koduri RS; Natan M; Tien M
    Biochemistry; 1999 Jul; 38(30):9608-16. PubMed ID: 10423238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of the partitioning behavior of Irgarol-1051 and its transformation products.
    Lam KH; Wai HY; Leung KM; Tsang VW; Tang CF; Cheung RY; Lam MH
    Chemosphere; 2006 Aug; 64(7):1177-84. PubMed ID: 16403564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicities of antifouling biocide Irgarol 1051 and its major degraded product to marine primary producers.
    Zhang AQ; Leung KM; Kwok KW; Bao VW; Lam MH
    Mar Pollut Bull; 2008; 57(6-12):575-86. PubMed ID: 18314144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of estrogenic activity of natural steroidal hormone estrone by ligninolytic enzymes from white rot fungi.
    Tamagawa Y; Yamaki R; Hirai H; Kawai S; Nishida T
    Chemosphere; 2006 Sep; 65(1):97-101. PubMed ID: 16584756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative dechlorination of methoxychlor by ligninolytic enzymes from white-rot fungi.
    Hirai H; Nakanishi S; Nishida T
    Chemosphere; 2004 Apr; 55(4):641-5. PubMed ID: 15006517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolytic conditions.
    Ning D; Wang H; Ding C; Lu H
    Biodegradation; 2010 Nov; 21(6):889-901. PubMed ID: 20333538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic degradation of anthracene by the white rot fungus Phanerochaete chrysosporium immobilized on sugarcane bagasse.
    Mohammadi A; Enayatzadeh M; Nasernejad B
    J Hazard Mater; 2009 Jan; 161(1):534-7. PubMed ID: 18482797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of CL-20 by white-rot fungi.
    Fournier D; Monteil-Rivera F; Halasz A; Bhatt M; Hawari J
    Chemosphere; 2006 Mar; 63(1):175-81. PubMed ID: 16112713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manganese peroxidase from the white-rot fungus Phanerochaete chrysosporium is enzymatically active and accumulates to high levels in transgenic maize seed.
    Clough RC; Pappu K; Thompson K; Beifuss K; Lane J; Delaney DE; Harkey R; Drees C; Howard JA; Hood EE
    Plant Biotechnol J; 2006 Jan; 4(1):53-62. PubMed ID: 17177785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium--a white rot fungus.
    Wen X; Jia Y; Li J
    Chemosphere; 2009 May; 75(8):1003-7. PubMed ID: 19232429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes.
    Singh D; Chen S
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):399-417. PubMed ID: 18810426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peroxidase-catalyzed oxidation of azo dyes: mechanism of disperse Yellow 3 degradation.
    Spadaro JT; Renganathan V
    Arch Biochem Biophys; 1994 Jul; 312(1):301-7. PubMed ID: 8031141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-assembly of manganese peroxidase and lignin peroxidase from P. chrysosporium for biocatalysis in aqueous and non-aqueous media.
    Patel DS; Aithal RK; Krishna G; Lvov YM; Tien M; Kuila D
    Colloids Surf B Biointerfaces; 2005 Jun; 43(1):13-9. PubMed ID: 15916887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin peroxidase is involved in the biobleaching of manganese-less oxygen-delignified hardwood kraft pulp by white-rot fungi in the solid-fermentation system.
    Machii Y; Hirai H; Nishida T
    FEMS Microbiol Lett; 2004 Apr; 233(2):283-7. PubMed ID: 15063497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative stability of recombinant versus native peroxidases from Phanerochaete chrysosporium.
    Nie G; Reading NS; Aust SD
    Arch Biochem Biophys; 1999 May; 365(2):328-34. PubMed ID: 10328828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of estrogenic activity of 4-tert-octylphenol by ligninolytic enzymes from white rot fungi.
    Tamagawa Y; Hirai H; Kawai S; Nishida T
    Environ Toxicol; 2007 Jun; 22(3):281-6. PubMed ID: 17497634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.