BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 14988407)

  • 1. Smad4 protein stability is regulated by ubiquitin ligase SCF beta-TrCP1.
    Wan M; Tang Y; Tytler EM; Lu C; Jin B; Vickers SM; Yang L; Shi X; Cao X
    J Biol Chem; 2004 Apr; 279(15):14484-7. PubMed ID: 14988407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SCF(beta-TrCP1) controls Smad4 protein stability in pancreatic cancer cells.
    Wan M; Huang J; Jhala NC; Tytler EM; Yang L; Vickers SM; Tang Y; Lu C; Wang N; Cao X
    Am J Pathol; 2005 May; 166(5):1379-92. PubMed ID: 15855639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute myelogenous leukemia-derived SMAD4 mutations target the protein to ubiquitin-proteasome degradation.
    Yang L; Wang N; Tang Y; Cao X; Wan M
    Hum Mutat; 2006 Sep; 27(9):897-905. PubMed ID: 16865698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases.
    Morén A; Imamura T; Miyazono K; Heldin CH; Moustakas A
    J Biol Chem; 2005 Jun; 280(23):22115-23. PubMed ID: 15817471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CHIP mediates degradation of Smad proteins and potentially regulates Smad-induced transcription.
    Li L; Xin H; Xu X; Huang M; Zhang X; Chen Y; Zhang S; Fu XY; Chang Z
    Mol Cell Biol; 2004 Jan; 24(2):856-64. PubMed ID: 14701756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential ubiquitination defines the functional status of the tumor suppressor Smad4.
    Morén A; Hellman U; Inada Y; Imamura T; Heldin CH; Moustakas A
    J Biol Chem; 2003 Aug; 278(35):33571-82. PubMed ID: 12794086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN.
    Stroschein SL; Bonni S; Wrana JL; Luo K
    Genes Dev; 2001 Nov; 15(21):2822-36. PubMed ID: 11691834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor.
    Kuratomi G; Komuro A; Goto K; Shinozaki M; Miyazawa K; Miyazono K; Imamura T
    Biochem J; 2005 Mar; 386(Pt 3):461-70. PubMed ID: 15496141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arkadia activates Smad3/Smad4-dependent transcription by triggering signal-induced SnoN degradation.
    Levy L; Howell M; Das D; Harkin S; Episkopou V; Hill CS
    Mol Cell Biol; 2007 Sep; 27(17):6068-83. PubMed ID: 17591695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling.
    Itoh S; Ericsson J; Nishikawa J; Heldin CH; ten Dijke P
    Nucleic Acids Res; 2000 Nov; 28(21):4291-8. PubMed ID: 11058129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of Smad4 function in pancreatic tumors: C-terminal truncation leads to decreased stability.
    Maurice D; Pierreux CE; Howell M; Wilentz RE; Owen MJ; Hill CS
    J Biol Chem; 2001 Nov; 276(46):43175-81. PubMed ID: 11553622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins.
    Fukuchi M; Imamura T; Chiba T; Ebisawa T; Kawabata M; Tanaka K; Miyazono K
    Mol Biol Cell; 2001 May; 12(5):1431-43. PubMed ID: 11359933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sumoylation of Smad4, the common Smad mediator of transforming growth factor-beta family signaling.
    Lee PS; Chang C; Liu D; Derynck R
    J Biol Chem; 2003 Jul; 278(30):27853-63. PubMed ID: 12740389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells.
    Poncelet AC; de Caestecker MP; Schnaper HW
    Kidney Int; 1999 Oct; 56(4):1354-65. PubMed ID: 10504488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a gadd45beta 3' enhancer that mediates SMAD3- and SMAD4-dependent transcriptional induction by transforming growth factor beta.
    Major MB; Jones DA
    J Biol Chem; 2004 Feb; 279(7):5278-87. PubMed ID: 14630914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta.
    Feng XH; Lin X; Derynck R
    EMBO J; 2000 Oct; 19(19):5178-93. PubMed ID: 11013220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of functional Schistosoma mansoni Smad4: role in Erk-mediated transforming growth factor beta (TGF-beta) down-regulation.
    Osman A; Niles EG; LoVerde PT
    J Biol Chem; 2004 Feb; 279(8):6474-86. PubMed ID: 14630909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4.
    Nakao A; Imamura T; Souchelnytskyi S; Kawabata M; Ishisaki A; Oeda E; Tamaki K; Hanai J; Heldin CH; Miyazono K; ten Dijke P
    EMBO J; 1997 Sep; 16(17):5353-62. PubMed ID: 9311995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential regulation of TGF-beta signaling through Smad2, Smad3 and Smad4.
    Kretschmer A; Moepert K; Dames S; Sternberger M; Kaufmann J; Klippel A
    Oncogene; 2003 Oct; 22(43):6748-63. PubMed ID: 14555988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BRCA1 regulates transforming growth factor-β (TGF-β1) signaling through Gadd45a by enhancing the protein stability of Smad4.
    Li D; Kang N; Ji J; Zhan Q
    Mol Oncol; 2015 Oct; 9(8):1655-66. PubMed ID: 26022109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.