BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 14988494)

  • 21. The wheat TaGI1, involved in photoperiodic flowering, encodes an Arabidopsis GI ortholog.
    Zhao XY; Liu MS; Li JR; Guan CM; Zhang XS
    Plant Mol Biol; 2005 May; 58(1):53-64. PubMed ID: 16028116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis.
    Kubota A; Ito S; Shim JS; Johnson RS; Song YH; Breton G; Goralogia GS; Kwon MS; Laboy Cintrón D; Koyama T; Ohme-Takagi M; Pruneda-Paz JL; Kay SA; MacCoss MJ; Imaizumi T
    PLoS Genet; 2017 Jun; 13(6):e1006856. PubMed ID: 28628608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circadian clock and photoperiodic response in Arabidopsis: from seasonal flowering to redox homeostasis.
    Shim JS; Imaizumi T
    Biochemistry; 2015 Jan; 54(2):157-70. PubMed ID: 25346271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time to flower: interplay between photoperiod and the circadian clock.
    Johansson M; Staiger D
    J Exp Bot; 2015 Feb; 66(3):719-30. PubMed ID: 25371508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide analyses of the transcriptomes of salicylic acid-deficient versus wild-type plants uncover Pathogen and Circadian Controlled 1 (PCC1) as a regulator of flowering time in Arabidopsis.
    Segarra S; Mir R; Martínez C; León J
    Plant Cell Environ; 2010 Jan; 33(1):11-22. PubMed ID: 19781011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis.
    Park MJ; Kwon YJ; Gil KE; Park CM
    BMC Plant Biol; 2016 May; 16(1):114. PubMed ID: 27207270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light.
    Nefissi R; Natsui Y; Miyata K; Oda A; Hase Y; Nakagawa M; Ghorbel A; Mizoguchi T
    J Exp Bot; 2011 May; 62(8):2731-44. PubMed ID: 21296763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular cloning and expression analysis of a CONSTANS homologue, PnCOL1, from Pharbitis nil.
    Kim SJ; Moon J; Lee I; Maeng J; Kim SR
    J Exp Bot; 2003 Aug; 54(389):1879-87. PubMed ID: 12837818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana.
    Niwa Y; Yamashino T; Mizuno T
    Plant Cell Physiol; 2009 Apr; 50(4):838-54. PubMed ID: 19233867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Circadian clock mutants in Arabidopsis identified by luciferase imaging.
    Millar AJ; Carré IA; Strayer CA; Chua NH; Kay SA
    Science; 1995 Feb; 267(5201):1161-3. PubMed ID: 7855595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days.
    Fernández V; Takahashi Y; Le Gourrierec J; Coupland G
    Plant J; 2016 Jun; 86(5):426-40. PubMed ID: 27117775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation.
    Martin-Tryon EL; Kreps JA; Harmer SL
    Plant Physiol; 2007 Jan; 143(1):473-86. PubMed ID: 17098855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alternative splicing provides a proactive mechanism for the diurnal CONSTANS dynamics in Arabidopsis photoperiodic flowering.
    Gil KE; Park MJ; Lee HJ; Park YJ; Han SH; Kwon YJ; Seo PJ; Jung JH; Park CM
    Plant J; 2017 Jan; 89(1):128-140. PubMed ID: 27607358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clock-controlled and FLOWERING LOCUS T (FT)-dependent photoperiodic pathway in Lotus japonicus II: characterization of a microRNA implicated in the control of flowering time.
    Yamashino T; Yamawaki S; Hagui E; Ishida K; Ueoka-Nakanishi H; Nakamichi N; Mizuno T
    Biosci Biotechnol Biochem; 2013; 77(6):1179-85. PubMed ID: 23748785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RFI2, a RING-domain zinc finger protein, negatively regulates CONSTANS expression and photoperiodic flowering.
    Chen M; Ni M
    Plant J; 2006 Jun; 46(5):823-33. PubMed ID: 16709197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular Basis to Integrate Microgravity Signals into the Photoperiodic Flowering Pathway in
    Xie J; Wang L; Zheng H
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and characterization of the CONSTANS-like gene family in the short-day plant Chrysanthemum lavandulifolium.
    Fu J; Yang L; Dai S
    Mol Genet Genomics; 2015 Jun; 290(3):1039-54. PubMed ID: 25523304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis.
    Roden LC; Song HR; Jackson S; Morris K; Carre IA
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):13313-8. PubMed ID: 12271123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. tej defines a role for poly(ADP-ribosyl)ation in establishing period length of the arabidopsis circadian oscillator.
    Panda S; Poirier GG; Kay SA
    Dev Cell; 2002 Jul; 3(1):51-61. PubMed ID: 12110167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Rhythmic Gene Entrained to Midnight May Regulate Photoperiod-Controlled Flowering in
    Yeang HY
    Yale J Biol Med; 2019 Jun; 92(2):213-223. PubMed ID: 31249482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.