BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 14988925)

  • 21. Rapid evolution of RNA editing sites in a small non-essential plastid gene.
    Fiebig A; Stegemann S; Bock R
    Nucleic Acids Res; 2004; 32(12):3615-22. PubMed ID: 15240834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complete nucleotide sequence of the chloroplast genome from the Tasmanian blue gum, Eucalyptus globulus (Myrtaceae).
    Steane DA
    DNA Res; 2005; 12(3):215-20. PubMed ID: 16303753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Genomics and evolution of cellular organelles].
    Odintsova MS; Iurina NP
    Genetika; 2005 Sep; 41(9):1170-82. PubMed ID: 16240629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unique genes in plants: specificities and conserved features throughout evolution.
    Armisén D; Lecharny A; Aubourg S
    BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of new protein substrates for the chloroplast ATP-dependent Clp protease supports its constitutive role in Arabidopsis.
    Stanne TM; Sjögren LL; Koussevitzky S; Clarke AK
    Biochem J; 2009 Jan; 417(1):257-68. PubMed ID: 18754756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The evolution of chloroplast RNA editing.
    Tillich M; Lehwark P; Morton BR; Maier UG
    Mol Biol Evol; 2006 Oct; 23(10):1912-21. PubMed ID: 16835291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The evolution of plant genomes: scaling up from a population perspective.
    Flowers JM; Purugganan MD
    Curr Opin Genet Dev; 2008 Dec; 18(6):565-70. PubMed ID: 19131240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring the plant transcriptome through phylogenetic profiling.
    Vandepoele K; Van de Peer Y
    Plant Physiol; 2005 Jan; 137(1):31-42. PubMed ID: 15644465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene loss and genome rearrangement in the plastids of five Hemiparasites in the family Orobanchaceae.
    Frailey DC; Chaluvadi SR; Vaughn JN; Coatney CG; Bennetzen JL
    BMC Plant Biol; 2018 Feb; 18(1):30. PubMed ID: 29409454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Why are plastid genomes retained in non-photosynthetic organisms?
    Barbrook AC; Howe CJ; Purton S
    Trends Plant Sci; 2006 Feb; 11(2):101-8. PubMed ID: 16406301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plastid signalling to the nucleus and beyond.
    Pogson BJ; Woo NS; Förster B; Small ID
    Trends Plant Sci; 2008 Nov; 13(11):602-9. PubMed ID: 18838332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conservation of selection on matK following an ancient loss of its flanking intron.
    Duffy AM; Kelchner SA; Wolf PG
    Gene; 2009 Jun; 438(1-2):17-25. PubMed ID: 19236909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis.
    Wickett NJ; Zhang Y; Hansen SK; Roper JM; Kuehl JV; Plock SA; Wolf PG; DePamphilis CW; Boore JL; Goffinet B
    Mol Biol Evol; 2008 Feb; 25(2):393-401. PubMed ID: 18056074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses.
    Dorrell RG; Howe CJ
    J Cell Sci; 2012 Apr; 125(Pt 8):1865-75. PubMed ID: 22547565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutations in CHLOROPLAST RNA BINDING provide evidence for the involvement of the chloroplast in the regulation of the circadian clock in Arabidopsis.
    Hassidim M; Yakir E; Fradkin D; Hilman D; Kron I; Keren N; Harir Y; Yerushalmi S; Green RM
    Plant J; 2007 Aug; 51(4):551-62. PubMed ID: 17617174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chloroplast biogenesis during rehydration of the resurrection plant Xerophyta humilis: parallels to the etioplast-chloroplast transition.
    Ingle RA; Collett H; Cooper K; Takahashi Y; Farrant JM; Illing N
    Plant Cell Environ; 2008 Dec; 31(12):1813-24. PubMed ID: 18771571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple method for chloroplast transformation in Chlamydomonas reinhardtii.
    Ramesh VM; Bingham SE; Webber AN
    Methods Mol Biol; 2004; 274():301-7. PubMed ID: 15187288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta.
    Revill MJ; Stanley S; Hibberd JM
    J Exp Bot; 2005 Sep; 56(419):2477-86. PubMed ID: 16061507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris.
    Wolf PG; Rowe CA; Hasebe M
    Gene; 2004 Sep; 339():89-97. PubMed ID: 15363849
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The involvement of NtFtsZ2-1 gene in the regulation of chloroplast division and expansion in tobacco.
    Liu WZ; Kong DD; Wang D; Ju CL; Hu Y; Liu XL; Sun JS; He YK
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Aug; 33(4):267-76. PubMed ID: 17675749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.