BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 14990478)

  • 1. Evidence for the lack of a specific interaction between cholesterol and sphingomyelin.
    Holopainen JM; Metso AJ; Mattila JP; Jutila A; Kinnunen PK
    Biophys J; 2004 Mar; 86(3):1510-20. PubMed ID: 14990478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1995 Feb; 68(2):525-35. PubMed ID: 7696506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature and cholesterol composition-dependent behavior of 1-myristoyl-2-[12-[(5-dimethylamino-1-naphthalenesulfonyl)amino]dodecanoyl]-sn-glycero-3-phosphocholine in 1,2-dimyristoyl-sn-glycero-3-phosphocholine membranes.
    Troup GM; Wrenn SP
    Chem Phys Lipids; 2004 Sep; 131(2):167-82. PubMed ID: 15351269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the main transition of dinervonoylphosphocholine liposomes by fluorescence spectroscopy.
    Metso AJ; Mattila JP; Kinnunen PK
    Biochim Biophys Acta; 2004 May; 1663(1-2):222-31. PubMed ID: 15157624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploration of physical principles underlying lipid regular distribution: effects of pressure, temperature, and radius of curvature on E/M dips in pyrene-labeled PC/DMPC binary mixtures.
    Chong PL; Tang D; Sugar IP
    Biophys J; 1994 Jun; 66(6):2029-38. PubMed ID: 8075336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for the formation of microdomains in liquid crystalline large unilamellar vesicles caused by hydrophobic mismatch of the constituent phospholipids.
    Lehtonen JY; Holopainen JM; Kinnunen PK
    Biophys J; 1996 Apr; 70(4):1753-60. PubMed ID: 8785334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of the main phase transition of dinervonoylphosphocholine giant liposomes by fluorescence microscopy.
    Metso AJ; Zhao H; Tuunainen I; Kinnunen PK
    Biochim Biophys Acta; 2005 Jul; 1713(2):83-91. PubMed ID: 15979562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane.
    Holopainen JM; Subramanian M; Kinnunen PK
    Biochemistry; 1998 Dec; 37(50):17562-70. PubMed ID: 9860872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The lateral distribution of pyrene-labeled sphingomyelin and glucosylceramide in phosphatidylcholine bilayers.
    Hresko RC; Sugár IP; Barenholz Y; Thompson TE
    Biophys J; 1987 May; 51(5):725-33. PubMed ID: 3593870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-cholesteryl sphingomyelin-A synthetic sphingolipid with unique membrane properties.
    Sergelius C; Yamaguchi S; Yamamoto T; Slotte JP; Katsumura S
    Biochim Biophys Acta; 2011 Apr; 1808(4):1054-62. PubMed ID: 21194522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol. An NMR study of dynamics and lateral phase separation.
    Lindblom G; Orädd G; Filippov A
    Chem Phys Lipids; 2006 Jun; 141(1-2):179-84. PubMed ID: 16580657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanism of lateral diffusion of py(10)-PC and free pyrene in fluid DMPC bilayers.
    Martins J; Melo E
    Biophys J; 2001 Feb; 80(2):832-40. PubMed ID: 11159450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of free fatty acids on the permeability of 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer at the main phase transition.
    Langner M; Hui S
    Biochim Biophys Acta; 2000 Feb; 1463(2):439-47. PubMed ID: 10675520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interlamellar coupling of phospholipid bilayers in liposomes: an emergent property of lipid rearrangement.
    Parry MJ; Hagen M; Mouritsen OG; Kinnunen PK; Alakoskela JM
    Langmuir; 2010 Apr; 26(7):4909-15. PubMed ID: 20180577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sphingomyelin composition on the phase structure of phosphatidylcholine-sphingomyelin bilayers.
    Bar LK; Barenholz Y; Thompson TE
    Biochemistry; 1997 Mar; 36(9):2507-16. PubMed ID: 9054556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin.
    Zhao H; Mattila JP; Holopainen JM; Kinnunen PK
    Biophys J; 2001 Nov; 81(5):2979-91. PubMed ID: 11606308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of 5-fluorouracil loaded nanoparticles with 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes used as a cellular membrane model.
    Lopes S; Simeonova M; Gameiro P; Rangel M; Ivanova G
    J Phys Chem B; 2012 Jan; 116(1):667-75. PubMed ID: 22148190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ether phosphatidylcholines: comparison of miscibility with ester phosphatidylcholines and sphingomyelin, vesicle fusion, and association with apolipoprotein A-I.
    McKeone BJ; Pownall HJ; Massey JB
    Biochemistry; 1986 Nov; 25(23):7711-6. PubMed ID: 3099835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes.
    Holopainen JM; Lehtonen JY; Kinnunen PK
    Chem Phys Lipids; 1997 Aug; 88(1):1-13. PubMed ID: 9297850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface planar bilayers of phospholipids used in protein membrane reconstitution: an atomic force microscopy study.
    Doménech O; Merino-Montero S; Montero MT; Hernández-Borrell J
    Colloids Surf B Biointerfaces; 2006 Jan; 47(1):102-6. PubMed ID: 16406753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.