These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 14990501)

  • 1. Blind spectral decomposition of single-cell fluorescence by parallel factor analysis.
    Shirakawa H; Miyazaki S
    Biophys J; 2004 Mar; 86(3):1739-52. PubMed ID: 14990501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of single fluorescent labels using spectroscopic microscopy.
    Heider EC; Barhoum M; Peterson EM; Schaefer J; Harris JM
    Appl Spectrosc; 2010 Jan; 64(1):37-45. PubMed ID: 20132596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking of mercury ions in living cells with a fluorescent chemodosimeter under single- or two-photon excitation.
    Lu ZJ; Wang PN; Zhang Y; Chen JY; Zhen S; Leng B; Tian H
    Anal Chim Acta; 2007 Aug; 597(2):306-12. PubMed ID: 17683744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emission ratiometric imaging of intracellular zinc: design of a benzoxazole fluorescent sensor and its application in two-photon microscopy.
    Taki M; Wolford JL; O'Halloran TV
    J Am Chem Soc; 2004 Jan; 126(3):712-3. PubMed ID: 14733534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised decomposition of low-intensity low-dimensional multi-spectral fluorescent images for tumour demarcation.
    Kopriva I; Persin A
    Med Image Anal; 2009 Jun; 13(3):507-18. PubMed ID: 19282233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral kinetics ratiometry: a simple approach for real-time monitoring of fluorophore distributions in living cells.
    Ramanujan VK; Biener-Ramanujan E; Armmer K; Centonze VE; Herman BA
    Cytometry A; 2006 Aug; 69(8):912-9. PubMed ID: 16969810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of fluorescence anisotropy on fluorescence intensity and lifetime measurement: theory, simulations and experiments.
    Fixler D; Namer Y; Yishay Y; Deutsch M
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1141-52. PubMed ID: 16761841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes.
    Genicot G; Leroy JL; Soom AV; Donnay I
    Theriogenology; 2005 Mar; 63(4):1181-94. PubMed ID: 15710202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral decomposition of intracellular complex fluorescence using multiple-wavelength phase modulation lifetime determination: technical approach and preliminary applications.
    Praus P; Gaskova D; Kocisova E; Chaloupka R; Stepanek J; Bok J; Rejman D; Rosenberg I; Turpin PY; Sureau F
    Biopolymers; 2002; 67(4-5):339-43. PubMed ID: 12012462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confocal laser scanning microscopy of whole mouse ovaries: excellent morphology, apoptosis detection, and spectroscopy.
    Zucker RM; Jeffay SC
    Cytometry A; 2006 Aug; 69(8):930-9. PubMed ID: 16969804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Nikon C1si combines high spectral resolution, high sensitivity, and high acquisition speed.
    Larson JM
    Cytometry A; 2006 Aug; 69(8):825-34. PubMed ID: 16969806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral phasor analysis allows rapid and reliable unmixing of fluorescence microscopy spectral images.
    Fereidouni F; Bader AN; Gerritsen HC
    Opt Express; 2012 Jun; 20(12):12729-41. PubMed ID: 22714302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Modification of a method for studying free intracellular calcium].
    Zyma VL; Diachok OM; Hanchurin VV
    Fiziol Zh (1994); 1995; 41(3-4):115-20. PubMed ID: 8777747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolution of complex fluorescence spectra recorded on single unpigmented living cells using a computerised method.
    Salmon JM; Vigo J; Viallet P
    Cytometry; 1988 Jan; 9(1):25-32. PubMed ID: 3409783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical methods for imaging ionic activities.
    Moreton RB
    Scanning Microsc Suppl; 1994; 8():371-90. PubMed ID: 7638500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrahigh-resolution colocalization of spectrally separable point-like fluorescent probes.
    Michalet X; Lacoste TD; Weiss S
    Methods; 2001 Sep; 25(1):87-102. PubMed ID: 11559000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging live-cell dynamics and structure at the single-molecule level.
    Liu Z; Lavis LD; Betzig E
    Mol Cell; 2015 May; 58(4):644-59. PubMed ID: 26000849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous measurement of intracellular Ca(2+) and nitric oxide: a new method.
    Berkels R; Dachs C; Roesen R; Klaus W
    Cell Calcium; 2000 May; 27(5):281-6. PubMed ID: 10859594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computed tomography-based spectral imaging for fluorescence microscopy.
    Ford BK; Volin CE; Murphy SM; Lynch RM; Descour MR
    Biophys J; 2001 Feb; 80(2):986-93. PubMed ID: 11159465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.