These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 14990932)

  • 1. Synaptic dynamics mediate sensitivity to motion independent of stimulus details.
    Luksch H; Khanbabaie R; Wessel R
    Nat Neurosci; 2004 Apr; 7(4):380-8. PubMed ID: 14990932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparse spatial sampling for the computation of motion in multiple stages.
    Mahani AS; Khanbabaie R; Luksch H; Wessel R
    Biol Cybern; 2006 Apr; 94(4):276-87. PubMed ID: 16402243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons.
    Engert F; Tao HW; Zhang LI; Poo MM
    Nature; 2002 Oct; 419(6906):470-5. PubMed ID: 12368854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contextual interaction of GABAergic circuitry with dynamic synapses.
    Khanbabaie R; Mahani AS; Wessel R
    J Neurophysiol; 2007 Apr; 97(4):2802-11. PubMed ID: 17251366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Summation effects in receptive fields of the cat's pretectal neurons to stationary and moving visual stimuli.
    Dec K; Waleszczyk WJ; Harutiunian-Kozak BA
    Arch Ital Biol; 1998 Jan; 136(1):59-70. PubMed ID: 9492945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical study of multisensory integration in the superior colliculus by a neural network model.
    Magosso E; Cuppini C; Serino A; Di Pellegrino G; Ursino M
    Neural Netw; 2008 Aug; 21(6):817-29. PubMed ID: 18657393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular mechanisms for direction selectivity in the retina.
    Demb JB
    Neuron; 2007 Jul; 55(2):179-86. PubMed ID: 17640521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing of motion stimuli by cells in the optic tectum of chickens.
    Verhaal J; Luksch H
    Neuroreport; 2015 Jul; 26(10):578-82. PubMed ID: 26053699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An eye-tectum preparation allowing routine whole-cell recordings of neuronal responses to visual stimuli in frog.
    Svirskis G; Svirskiene N; Gutmaniene N
    J Neurosci Methods; 2009 May; 180(1):22-8. PubMed ID: 19427525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spike timing-dependent LTP/LTD mediates visual experience-dependent plasticity in a developing retinotectal system.
    Mu Y; Poo MM
    Neuron; 2006 Apr; 50(1):115-25. PubMed ID: 16600860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direction selectivity in the goldfish tectum revisited.
    Maximov V; Maximova E; Maximov P
    Ann N Y Acad Sci; 2005 Jun; 1048():198-205. PubMed ID: 16154933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic response properties of visual neurons and context-dependent surround effects on receptive fields in the tectum of the salamander Plethodon shermani.
    Schuelert N; Dicke U
    Neuroscience; 2005; 134(2):617-32. PubMed ID: 15975725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape selectivity for camouflage-breaking dynamic stimuli in dorsal V4 neurons.
    Mysore SG; Vogels R; Raiguel SE; Orban GA
    Cereb Cortex; 2008 Jun; 18(6):1429-43. PubMed ID: 17934186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic connection patterns between frog retinal ganglion cells and tectal neurons revealed by whole-cell recordings in vivo.
    Nakagawa H; Kikkawa S; Matsumoto N
    Brain Res; 1994 Dec; 665(2):319-22. PubMed ID: 7895070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientation sensitive properties of visually driven neurons in extrastriate area 21a of cat cortex.
    Harutiunian-Kozak BA; Grigorian GG; Kozak JA; Sharanbekian AB; Sarkisyan GS; Khachvankian DK
    Arch Ital Biol; 2008 Jun; 146(2):119-30. PubMed ID: 18822799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-dependent matching of excitatory and inhibitory inputs during refinement of visual receptive fields.
    Tao HW; Poo MM
    Neuron; 2005 Mar; 45(6):829-36. PubMed ID: 15797545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tectal neurons signal impending collision of looming objects in the pigeon.
    Wu LQ; Niu YQ; Yang J; Wang SR
    Eur J Neurosci; 2005 Nov; 22(9):2325-31. PubMed ID: 16262670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of retinal and tectal neurons in non-paralyzed toads Bufo bufo and B. marinus to the real size versus angular size of objects moved at variable distance.
    Spreckelsen C; Schürg-Pfeiffer E; Ewert JP
    Neurosci Lett; 1995 Jan; 184(2):105-8. PubMed ID: 7724041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A relative signalling model for the formation of a topographic neural map.
    Reber M; Burrola P; Lemke G
    Nature; 2004 Oct; 431(7010):847-53. PubMed ID: 15483613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analysis of postsynaptic potentials of tectal neurons of the frog: correlation with impulses recorded from the terminals of retinotectal afferents.
    Nagano K; Li QL; Tamada A; Matsumoto N
    Exp Brain Res; 1988; 70(2):429-32. PubMed ID: 3260193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.